
Q: Prove that: $\dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} = \cot x$
Answer
597k+ views
Hint: Start with left hand side, use formulas $1 + \cos 2x = 2{\cos ^2}x$, $1 - \cos 2x = 2{\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$ and then simplify it further to bring it in the form of right hand side.
Complete step by step answer:
From the question,
$
\Rightarrow LHS = \dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} \\
\Rightarrow LHS = \dfrac{{(1 + \cos 2x) + \sin 2x}}{{(1 - \cos 2x) + \sin 2x}} \\
$
We know that $1 + \cos 2x = 2{\cos ^2}x$, $1 - \cos 2x = 2{\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$. Using these formulas for above expression, we’ll get:
$
\Rightarrow LHS = \dfrac{{2{{\cos }^2}x + 2\sin x\cos x}}{{2{{\sin }^2}x + 2\sin x\cos x}} \\
\Rightarrow LHS = \dfrac{{2\cos x(\cos x + \sin x)}}{{2\sin x(\sin x + \cos x)}} \\
\Rightarrow LHS = \dfrac{{\cos x}}{{\sin x}} \\
\Rightarrow LHS = \cot x = RHS \\
$
This is the required proof.
Note: The formula for $\cos 2x$ can be used in three different forms:
$
\Rightarrow \cos 2x = 2{\cos ^2}x - 1 \\
\Rightarrow \cos 2x = 1 - 2{\sin ^2}x \\
\Rightarrow \cos 2x = {\cos ^2}x - {\sin ^2}x \\
$
We can use any of them as per the requirement of the question.
Complete step by step answer:
From the question,
$
\Rightarrow LHS = \dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} \\
\Rightarrow LHS = \dfrac{{(1 + \cos 2x) + \sin 2x}}{{(1 - \cos 2x) + \sin 2x}} \\
$
We know that $1 + \cos 2x = 2{\cos ^2}x$, $1 - \cos 2x = 2{\sin ^2}x$ and $\sin 2x = 2\sin x\cos x$. Using these formulas for above expression, we’ll get:
$
\Rightarrow LHS = \dfrac{{2{{\cos }^2}x + 2\sin x\cos x}}{{2{{\sin }^2}x + 2\sin x\cos x}} \\
\Rightarrow LHS = \dfrac{{2\cos x(\cos x + \sin x)}}{{2\sin x(\sin x + \cos x)}} \\
\Rightarrow LHS = \dfrac{{\cos x}}{{\sin x}} \\
\Rightarrow LHS = \cot x = RHS \\
$
This is the required proof.
Note: The formula for $\cos 2x$ can be used in three different forms:
$
\Rightarrow \cos 2x = 2{\cos ^2}x - 1 \\
\Rightarrow \cos 2x = 1 - 2{\sin ^2}x \\
\Rightarrow \cos 2x = {\cos ^2}x - {\sin ^2}x \\
$
We can use any of them as per the requirement of the question.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

