
How do you put the following numbers in ascending order: $ 0.4,\dfrac{3}{8},35\% ,\dfrac{{12}}{{25}} $ ?
Answer
554.1k+ views
Hint: Ascending order is a method of arranging numbers from smallest to largest. For example, a set of natural numbers are in ascending order, such as $ 1,2,3,4,5,6,7,8 \ldots $ and so on.
The given numbers are $ 0.4,\dfrac{3}{8},35\% ,\dfrac{{12}}{{25}} $
First we find the individual value of the given numbers.
After that we check the lowest to the highest number.
Finally we get the ascending order.
Complete step-by-step solution:
The given numbers are $ 0.4,\dfrac{3}{8},35\% ,\dfrac{{12}}{{25}} $
We are then ready to compare them. Here
We convert into all the given numbers in four decimal points, hence we get
Let, $ 0.4 $
We add three decimal zeros, hence we get
$ \Rightarrow 0.4 = 0.4000 $
Let, $ \dfrac{3}{8} $
Multiply by $ 125 $ in the numerator and the denominator, hence we get
$ \Rightarrow \dfrac{{3 \times 125}}{{8 \times 125}} $
Multiply $ 3 $ by $ 125 $ in the numerator, hence we get
$ \Rightarrow \dfrac{{375}}{{8 \times 125}} $
Multiply $ 8 $ by $ 125 $ in the denominator, hence we get
$ \Rightarrow \dfrac{{375}}{{1000}} $
Divide $ 375 $ by $ 1000 $ , hence we get
$ \Rightarrow \dfrac{{375}}{{1000}} = 0.3750 $
Let, $ 35\% $
We convert into the division, hence we get
$ \Rightarrow \dfrac{{35}}{{100}} $
Divide $ 35 $ by $ 100 $ , hence we get
$ \Rightarrow \dfrac{{35}}{{100}} = 0.3500 $
Let, $ \dfrac{{12}}{{25}} $
Multiply by $ 4 $ in the numerator and the denominator, hence we get
$ \Rightarrow \dfrac{{12 \times 4}}{{25 \times 4}} $
Multiply $ 12 $ by $ 4 $ in the numerator, hence we get
$ \Rightarrow \dfrac{{48}}{{25 \times 4}} $
Multiply $ 25 $ by $ 4 $ in the denominator, hence we get
$ \Rightarrow \dfrac{{48}}{{100}} $
Divide $ 48 $ by $ 100 $ , hence we get
$ \Rightarrow \dfrac{{48}}{{100}} = 0.4800 $
Hence we find the values.
Now, it is apparent that $ 35\% $ is least and then come $ \dfrac{3}{8},0.4 $ and lastly $ \dfrac{{12}}{{25}} $
In ascending order, they are
$ \Rightarrow 35\% ,\dfrac{3}{8},0.4,\dfrac{{12}}{{25}} $
Note: Write the number in decimal systems up to a reasonable number of digits after the decimal (the closer the number more digits may have to be used). Here we use up to four places of decimal.
Convert the fractions (whether repeating or non-repeating), percentages, irrational numbers (if any), into decimal. Each being approximated to the same number of decimals.
The given numbers are $ 0.4,\dfrac{3}{8},35\% ,\dfrac{{12}}{{25}} $
First we find the individual value of the given numbers.
After that we check the lowest to the highest number.
Finally we get the ascending order.
Complete step-by-step solution:
The given numbers are $ 0.4,\dfrac{3}{8},35\% ,\dfrac{{12}}{{25}} $
We are then ready to compare them. Here
We convert into all the given numbers in four decimal points, hence we get
Let, $ 0.4 $
We add three decimal zeros, hence we get
$ \Rightarrow 0.4 = 0.4000 $
Let, $ \dfrac{3}{8} $
Multiply by $ 125 $ in the numerator and the denominator, hence we get
$ \Rightarrow \dfrac{{3 \times 125}}{{8 \times 125}} $
Multiply $ 3 $ by $ 125 $ in the numerator, hence we get
$ \Rightarrow \dfrac{{375}}{{8 \times 125}} $
Multiply $ 8 $ by $ 125 $ in the denominator, hence we get
$ \Rightarrow \dfrac{{375}}{{1000}} $
Divide $ 375 $ by $ 1000 $ , hence we get
$ \Rightarrow \dfrac{{375}}{{1000}} = 0.3750 $
Let, $ 35\% $
We convert into the division, hence we get
$ \Rightarrow \dfrac{{35}}{{100}} $
Divide $ 35 $ by $ 100 $ , hence we get
$ \Rightarrow \dfrac{{35}}{{100}} = 0.3500 $
Let, $ \dfrac{{12}}{{25}} $
Multiply by $ 4 $ in the numerator and the denominator, hence we get
$ \Rightarrow \dfrac{{12 \times 4}}{{25 \times 4}} $
Multiply $ 12 $ by $ 4 $ in the numerator, hence we get
$ \Rightarrow \dfrac{{48}}{{25 \times 4}} $
Multiply $ 25 $ by $ 4 $ in the denominator, hence we get
$ \Rightarrow \dfrac{{48}}{{100}} $
Divide $ 48 $ by $ 100 $ , hence we get
$ \Rightarrow \dfrac{{48}}{{100}} = 0.4800 $
Hence we find the values.
Now, it is apparent that $ 35\% $ is least and then come $ \dfrac{3}{8},0.4 $ and lastly $ \dfrac{{12}}{{25}} $
In ascending order, they are
$ \Rightarrow 35\% ,\dfrac{3}{8},0.4,\dfrac{{12}}{{25}} $
Note: Write the number in decimal systems up to a reasonable number of digits after the decimal (the closer the number more digits may have to be used). Here we use up to four places of decimal.
Convert the fractions (whether repeating or non-repeating), percentages, irrational numbers (if any), into decimal. Each being approximated to the same number of decimals.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

