
Prove the trigonometric identity \[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = 2\sec A\]
Answer
581.7k+ views
Hint:Here we rationalize each part of the equation on left side separately and then convert the trigonometric forms of \[\cos ec\theta = \dfrac{1}{{\sin \theta }}\]and substitute in the left side of the equation and using the trigonometric identity \[\cos e{c^2}\theta = 1 + {\cot ^2}\theta \]we make LHS of the equation equal to RHS of the equation.
Complete step-by-step answer:
First we rationalize each part of the equation on LHS.
We rationalize the term \[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \] by multiplying both numerator and denominator by \[\sqrt {\cos ecA - 1} \]
So, \[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \times \sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA - 1}}} = \sqrt {\dfrac{{(\cos ecA - 1) \times (\cos ecA - 1)}}{{(\cos ecA + 1) \times (\cos ecA - 1)}}} \]
\[ = \sqrt {\dfrac{{{{(\cos ecA - 1)}^2}}}{{{{(\cos ecA)}^2} - {1^2}}}} \] { since \[(a - b)(a + b) = {a^2} - {b^2}\]}
Substitute the value \[\cos e{c^2}\theta = 1 + {\cot ^2}\theta \] in the denominator
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \times \sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA - 1}}} = \sqrt {\dfrac{{{{(\cos ecA - 1)}^2}}}{{1 + {{\cot }^2}A - {1^2}}}} \]
\[
= \sqrt {\dfrac{{{{(\cos ecA - 1)}^2}}}{{{{\cot }^2}A}}} \\
= \sqrt {{{\left( {\dfrac{{\cos ecA - 1}}{{\cot A}}} \right)}^2}} \\
\] { taking the squares common }
Now we can cancel out the square root by square of the whole value.
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \times \sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA - 1}}} = \dfrac{{\cos ecA - 1}}{{\cot A}}\]
Similarly we rationalize the second part of LHS.
We rationalize the term \[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \] by multiplying both numerator and denominator by \[\sqrt {\cos ecA + 1} \]
So, \[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \times \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA + 1}}} = \sqrt {\dfrac{{(\cos ecA + 1) \times (\cos ecA + 1)}}{{(\cos ecA - 1) \times (\cos ecA + 1)}}} \]
\[ = \sqrt {\dfrac{{{{(\cos ecA + 1)}^2}}}{{{{(\cos ecA)}^2} - {1^2}}}} \] { since \[(a - b)(a + b) = {a^2} - {b^2}\]}
Substitute the value \[\cos e{c^2}\theta = 1 + {\cot ^2}\theta \] in the denominator
\[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \times \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA + 1}}} = \sqrt {\dfrac{{{{(\cos ecA + 1)}^2}}}{{1 + {{\cot }^2}A - {1^2}}}} \]
\[
= \sqrt {\dfrac{{{{(\cos ecA + 1)}^2}}}{{{{\cot }^2}A}}} \\
= \sqrt {{{\left( {\dfrac{{\cos ecA + 1}}{{\cot A}}} \right)}^2}} \\
\] { taking the squares common }
Now we can cancel out the square root by square of the whole value.
\[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \times \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA + 1}}} = \dfrac{{\cos ecA + 1}}{{\cot A}}\]
Now we substitute both the values in LHS of the equation.
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = \dfrac{{\cos ecA - 1}}{{\cot A}} + \dfrac{{\cos ecA + 1}}{{\cot A}}\]
Taking LCM on the RHS of the equation.
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = \dfrac{{\cos ecA - 1 + \cos ecA + 1}}{{\cot A}}\]
\[ = \dfrac{{2\cos ecA}}{{\cot A}}\]
Substituting the values of \[\cos ecA = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\]
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = \dfrac{{2\dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}}}}\]
\[
= \dfrac{2}{{\sin A}} \times \dfrac{{\sin A}}{{\cos A}} \\
= \dfrac{2}{{\cos A}} \\
\] { Cancel the same terms }
Now substitute the value of \[\dfrac{1}{{\cos A}} = \sec A\]
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = 2\sec A\]
Hence proved.
Note:Students are likely to make mistakes solving the question without rationalizing the terms under the square root and the terms in fraction form which makes the solution more complicated. Keep in mind we always rationalize first and then proceed with the solution. Also always try to convert the term under the square root as a square term so as to cancel out the root.
Complete step-by-step answer:
First we rationalize each part of the equation on LHS.
We rationalize the term \[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \] by multiplying both numerator and denominator by \[\sqrt {\cos ecA - 1} \]
So, \[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \times \sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA - 1}}} = \sqrt {\dfrac{{(\cos ecA - 1) \times (\cos ecA - 1)}}{{(\cos ecA + 1) \times (\cos ecA - 1)}}} \]
\[ = \sqrt {\dfrac{{{{(\cos ecA - 1)}^2}}}{{{{(\cos ecA)}^2} - {1^2}}}} \] { since \[(a - b)(a + b) = {a^2} - {b^2}\]}
Substitute the value \[\cos e{c^2}\theta = 1 + {\cot ^2}\theta \] in the denominator
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \times \sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA - 1}}} = \sqrt {\dfrac{{{{(\cos ecA - 1)}^2}}}{{1 + {{\cot }^2}A - {1^2}}}} \]
\[
= \sqrt {\dfrac{{{{(\cos ecA - 1)}^2}}}{{{{\cot }^2}A}}} \\
= \sqrt {{{\left( {\dfrac{{\cos ecA - 1}}{{\cot A}}} \right)}^2}} \\
\] { taking the squares common }
Now we can cancel out the square root by square of the whole value.
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} \times \sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA - 1}}} = \dfrac{{\cos ecA - 1}}{{\cot A}}\]
Similarly we rationalize the second part of LHS.
We rationalize the term \[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \] by multiplying both numerator and denominator by \[\sqrt {\cos ecA + 1} \]
So, \[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \times \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA + 1}}} = \sqrt {\dfrac{{(\cos ecA + 1) \times (\cos ecA + 1)}}{{(\cos ecA - 1) \times (\cos ecA + 1)}}} \]
\[ = \sqrt {\dfrac{{{{(\cos ecA + 1)}^2}}}{{{{(\cos ecA)}^2} - {1^2}}}} \] { since \[(a - b)(a + b) = {a^2} - {b^2}\]}
Substitute the value \[\cos e{c^2}\theta = 1 + {\cot ^2}\theta \] in the denominator
\[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \times \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA + 1}}} = \sqrt {\dfrac{{{{(\cos ecA + 1)}^2}}}{{1 + {{\cot }^2}A - {1^2}}}} \]
\[
= \sqrt {\dfrac{{{{(\cos ecA + 1)}^2}}}{{{{\cot }^2}A}}} \\
= \sqrt {{{\left( {\dfrac{{\cos ecA + 1}}{{\cot A}}} \right)}^2}} \\
\] { taking the squares common }
Now we can cancel out the square root by square of the whole value.
\[\sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} \times \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA + 1}}} = \dfrac{{\cos ecA + 1}}{{\cot A}}\]
Now we substitute both the values in LHS of the equation.
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = \dfrac{{\cos ecA - 1}}{{\cot A}} + \dfrac{{\cos ecA + 1}}{{\cot A}}\]
Taking LCM on the RHS of the equation.
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = \dfrac{{\cos ecA - 1 + \cos ecA + 1}}{{\cot A}}\]
\[ = \dfrac{{2\cos ecA}}{{\cot A}}\]
Substituting the values of \[\cos ecA = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\]
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = \dfrac{{2\dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}}}}\]
\[
= \dfrac{2}{{\sin A}} \times \dfrac{{\sin A}}{{\cos A}} \\
= \dfrac{2}{{\cos A}} \\
\] { Cancel the same terms }
Now substitute the value of \[\dfrac{1}{{\cos A}} = \sec A\]
\[\sqrt {\dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}} + \sqrt {\dfrac{{\cos ecA + 1}}{{\cos ecA - 1}}} = 2\sec A\]
Hence proved.
Note:Students are likely to make mistakes solving the question without rationalizing the terms under the square root and the terms in fraction form which makes the solution more complicated. Keep in mind we always rationalize first and then proceed with the solution. Also always try to convert the term under the square root as a square term so as to cancel out the root.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

