
How can you prove the trigonometric identity of the following: $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x) = 2\tan 2x$
Answer
480k+ views
Hint: We can solve these types of questions easily if we are familiar with its formulas. We will expand the two terms of tan which are on the left side. We will take the L.C.M. of the denominator and simplify them. We will use formulas and try to convert the equation in terms of tan2x.
Complete step-by-step solution:
We have to prove that $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)$ is equal to $2\tan 2x$ .
We will firstly simplify the term $\tan (x + {45^ \circ })$ and $\tan ({45^ \circ } - x)$ individually
We know that \[\;tan(a + b) = \dfrac{{tana + tanb}}{{1 - tana \times tanb}}\] ……………(1)
We will use the equation 1 and expand $\tan (x + {45^ \circ })$
\[\; \Rightarrow tan(x + 45) = \dfrac{{\tan x + tan45}}{{1 - \tan x \times tan45}}\]
We have put the value of tan45
\[\; \Rightarrow tan(x + 45) = \dfrac{{\tan x + 1}}{{1 - \tan x \times 1}}\] ………………(2)
We know that \[\;tan(a - b) = \dfrac{{tana - tanb}}{{1 + tana \times tanb}}\] ……………(3)
Similarly, we will expand $\tan ({45^ \circ } - x)$ using the equation 3
\[\; \Rightarrow tan(45 - x) = \dfrac{{\tan 45 - \tan x}}{{1 + \tan 45 \times \tan x}}\]
We have put the value of tan45
\[\; \Rightarrow tan(45 - x) = \dfrac{{1 - \tan x}}{{1 + 1 \times \tan x}}\] ………………….(4)
We will substitute the value from the equation 2 and 4 in the equation $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)$
\[ = \tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)\]
\[ = \;\dfrac{{\tan x + 1}}{{1 - \tan x}} - \dfrac{{1 - \tan x}}{{1 + \tan x}}\]
We will take the L.C.M. and simplify it
\[ = \;\dfrac{{{{\left( {\tan x + 1} \right)}^2} - {{\left( {1 - \tan x} \right)}^2}}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
We have expanded the squared terms
\[ = \;\dfrac{{{{\tan }^2}x + 1 + 2\tan x - \left( {1 + {{\tan }^2}x - 2\tan x} \right)}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
\[ = \;\dfrac{{{{\tan }^2}x + 1 + 2\tan x - 1 - {{\tan }^2}x + 2\tan x}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
\[ = \;\dfrac{{4\tan x}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
We know that $\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$
So, we convert the above equation in terms of tan2x, we get
\[ = \;2\tan 2x\]
Hence, we proved that $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x) = 2\tan 2x$ .
Note: Sometimes we solve the question but we can't reach our final answer. It happens maybe because of the wrong approach, for this particular question another possibility is that we can't convert our last result to our desired result. We should also memorise all of the usual angle values of sin, cosine, and tan.
Complete step-by-step solution:
We have to prove that $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)$ is equal to $2\tan 2x$ .
We will firstly simplify the term $\tan (x + {45^ \circ })$ and $\tan ({45^ \circ } - x)$ individually
We know that \[\;tan(a + b) = \dfrac{{tana + tanb}}{{1 - tana \times tanb}}\] ……………(1)
We will use the equation 1 and expand $\tan (x + {45^ \circ })$
\[\; \Rightarrow tan(x + 45) = \dfrac{{\tan x + tan45}}{{1 - \tan x \times tan45}}\]
We have put the value of tan45
\[\; \Rightarrow tan(x + 45) = \dfrac{{\tan x + 1}}{{1 - \tan x \times 1}}\] ………………(2)
We know that \[\;tan(a - b) = \dfrac{{tana - tanb}}{{1 + tana \times tanb}}\] ……………(3)
Similarly, we will expand $\tan ({45^ \circ } - x)$ using the equation 3
\[\; \Rightarrow tan(45 - x) = \dfrac{{\tan 45 - \tan x}}{{1 + \tan 45 \times \tan x}}\]
We have put the value of tan45
\[\; \Rightarrow tan(45 - x) = \dfrac{{1 - \tan x}}{{1 + 1 \times \tan x}}\] ………………….(4)
We will substitute the value from the equation 2 and 4 in the equation $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)$
\[ = \tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)\]
\[ = \;\dfrac{{\tan x + 1}}{{1 - \tan x}} - \dfrac{{1 - \tan x}}{{1 + \tan x}}\]
We will take the L.C.M. and simplify it
\[ = \;\dfrac{{{{\left( {\tan x + 1} \right)}^2} - {{\left( {1 - \tan x} \right)}^2}}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
We have expanded the squared terms
\[ = \;\dfrac{{{{\tan }^2}x + 1 + 2\tan x - \left( {1 + {{\tan }^2}x - 2\tan x} \right)}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
\[ = \;\dfrac{{{{\tan }^2}x + 1 + 2\tan x - 1 - {{\tan }^2}x + 2\tan x}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
\[ = \;\dfrac{{4\tan x}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}\]
We know that $\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$
So, we convert the above equation in terms of tan2x, we get
\[ = \;2\tan 2x\]
Hence, we proved that $\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x) = 2\tan 2x$ .
Note: Sometimes we solve the question but we can't reach our final answer. It happens maybe because of the wrong approach, for this particular question another possibility is that we can't convert our last result to our desired result. We should also memorise all of the usual angle values of sin, cosine, and tan.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

