
Prove the trigonometric expression $\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Answer
517.5k+ views
Hint: To solve this question, you must know the following conversions:
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
There are also a few identities to keep in mind:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
Here, we will first simplify the left side of the equation (L.H.S) and equate it to the right side of the equation (R.H.S). This would prove our result.
Complete step-by-step solution:
Let us start with the L.H.S as
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta } \\
& \\
\end{align}$
Using $\cot \theta =\dfrac{1}{\tan \theta }$, we get
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{\dfrac{1}{{{\tan }^{3}}\theta }}{1+\dfrac{1}{{{\tan }^{2}}\theta }} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\tan }^{2}}\theta }{{{\tan }^{3}}\theta \left( 1+{{\tan }^{2}}\theta \right)} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)} \\
\end{align}$
Taking L.C.M of denominator, we get
$\dfrac{{{\tan }^{4}}\theta +1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)}$
Replacing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
$\begin{align}
& \dfrac{\dfrac{{{\sin }^{4}}\theta }{{{\cos }^{4}}\theta }+1}{\dfrac{\sin \theta }{\cos \theta }\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)} \\
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\dfrac{\sin \theta {{\cos }^{4}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{{{\cos }^{3}}\theta }} \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$=\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\sin \theta \cos \theta }$
Now, adding and subtracting $2{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ from the numerator,
$\begin{align}
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{{{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
\end{align}$
Using the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ , we get
$=\dfrac{{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }$
As we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$\begin{align}
& =\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta \\
& \\
\end{align}$
As we know that,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
Hence, we get
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Comparing L.H.S with R.H.S, we get
$L.H.S=R.H.S$
Hence, we have proved the above result.
Note: Here is an alternative and much shorter way to prove the above expression:
L.H.S
$\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }\text{ }$
Using the identities
$\begin{align}
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
We get,
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta -1 \right)}{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta -1 \right)}{\text{cosec}^{2}\theta }\text{ }$
On breaking the numerator further to separate different terms, we can write it as
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta \right)}{{{\sec }^{2}}\theta }-\dfrac{\tan \theta }{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta \right)}{\text{cosec}^{2}\theta }-\dfrac{\cot \theta }{\text{cosec}^{2}\theta }$
Using the following conversions
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\tan \theta -\sin \theta \cos \theta +\cot \theta -\sin \theta \cos \theta \text{ }$
$\begin{align}
& =\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-2\sin \theta \cos \theta \\
& =\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\cos \theta \sin \theta }-2\sin \theta \cos \theta \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$=\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta $
Using,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Since, $L.H.S=R.H.S$, hence we have proved the above relation.
While solving questions related to verifying an equation, we can proceed by simplifying either of the sides of the equation and reducing it further to get it equal to the other side of the equation. Just remember the formulas, identities and trigonometric conversions and you will obtain the right answer. Take care of the signs and the expression and avoid any calculation errors.
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
There are also a few identities to keep in mind:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
Here, we will first simplify the left side of the equation (L.H.S) and equate it to the right side of the equation (R.H.S). This would prove our result.
Complete step-by-step solution:
Let us start with the L.H.S as
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta } \\
& \\
\end{align}$
Using $\cot \theta =\dfrac{1}{\tan \theta }$, we get
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{\dfrac{1}{{{\tan }^{3}}\theta }}{1+\dfrac{1}{{{\tan }^{2}}\theta }} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\tan }^{2}}\theta }{{{\tan }^{3}}\theta \left( 1+{{\tan }^{2}}\theta \right)} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)} \\
\end{align}$
Taking L.C.M of denominator, we get
$\dfrac{{{\tan }^{4}}\theta +1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)}$
Replacing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
$\begin{align}
& \dfrac{\dfrac{{{\sin }^{4}}\theta }{{{\cos }^{4}}\theta }+1}{\dfrac{\sin \theta }{\cos \theta }\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)} \\
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\dfrac{\sin \theta {{\cos }^{4}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{{{\cos }^{3}}\theta }} \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$=\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\sin \theta \cos \theta }$
Now, adding and subtracting $2{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ from the numerator,
$\begin{align}
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{{{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
\end{align}$
Using the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ , we get
$=\dfrac{{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }$
As we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$\begin{align}
& =\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta \\
& \\
\end{align}$
As we know that,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
Hence, we get
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Comparing L.H.S with R.H.S, we get
$L.H.S=R.H.S$
Hence, we have proved the above result.
Note: Here is an alternative and much shorter way to prove the above expression:
L.H.S
$\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }\text{ }$
Using the identities
$\begin{align}
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
We get,
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta -1 \right)}{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta -1 \right)}{\text{cosec}^{2}\theta }\text{ }$
On breaking the numerator further to separate different terms, we can write it as
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta \right)}{{{\sec }^{2}}\theta }-\dfrac{\tan \theta }{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta \right)}{\text{cosec}^{2}\theta }-\dfrac{\cot \theta }{\text{cosec}^{2}\theta }$
Using the following conversions
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\tan \theta -\sin \theta \cos \theta +\cot \theta -\sin \theta \cos \theta \text{ }$
$\begin{align}
& =\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-2\sin \theta \cos \theta \\
& =\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\cos \theta \sin \theta }-2\sin \theta \cos \theta \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$=\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta $
Using,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Since, $L.H.S=R.H.S$, hence we have proved the above relation.
While solving questions related to verifying an equation, we can proceed by simplifying either of the sides of the equation and reducing it further to get it equal to the other side of the equation. Just remember the formulas, identities and trigonometric conversions and you will obtain the right answer. Take care of the signs and the expression and avoid any calculation errors.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

