
Prove the trigonometric expression $\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Answer
531.6k+ views
Hint: To solve this question, you must know the following conversions:
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
There are also a few identities to keep in mind:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
Here, we will first simplify the left side of the equation (L.H.S) and equate it to the right side of the equation (R.H.S). This would prove our result.
Complete step-by-step solution:
Let us start with the L.H.S as
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta } \\
& \\
\end{align}$
Using $\cot \theta =\dfrac{1}{\tan \theta }$, we get
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{\dfrac{1}{{{\tan }^{3}}\theta }}{1+\dfrac{1}{{{\tan }^{2}}\theta }} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\tan }^{2}}\theta }{{{\tan }^{3}}\theta \left( 1+{{\tan }^{2}}\theta \right)} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)} \\
\end{align}$
Taking L.C.M of denominator, we get
$\dfrac{{{\tan }^{4}}\theta +1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)}$
Replacing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
$\begin{align}
& \dfrac{\dfrac{{{\sin }^{4}}\theta }{{{\cos }^{4}}\theta }+1}{\dfrac{\sin \theta }{\cos \theta }\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)} \\
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\dfrac{\sin \theta {{\cos }^{4}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{{{\cos }^{3}}\theta }} \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$=\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\sin \theta \cos \theta }$
Now, adding and subtracting $2{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ from the numerator,
$\begin{align}
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{{{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
\end{align}$
Using the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ , we get
$=\dfrac{{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }$
As we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$\begin{align}
& =\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta \\
& \\
\end{align}$
As we know that,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
Hence, we get
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Comparing L.H.S with R.H.S, we get
$L.H.S=R.H.S$
Hence, we have proved the above result.
Note: Here is an alternative and much shorter way to prove the above expression:
L.H.S
$\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }\text{ }$
Using the identities
$\begin{align}
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
We get,
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta -1 \right)}{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta -1 \right)}{\text{cosec}^{2}\theta }\text{ }$
On breaking the numerator further to separate different terms, we can write it as
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta \right)}{{{\sec }^{2}}\theta }-\dfrac{\tan \theta }{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta \right)}{\text{cosec}^{2}\theta }-\dfrac{\cot \theta }{\text{cosec}^{2}\theta }$
Using the following conversions
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\tan \theta -\sin \theta \cos \theta +\cot \theta -\sin \theta \cos \theta \text{ }$
$\begin{align}
& =\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-2\sin \theta \cos \theta \\
& =\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\cos \theta \sin \theta }-2\sin \theta \cos \theta \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$=\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta $
Using,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Since, $L.H.S=R.H.S$, hence we have proved the above relation.
While solving questions related to verifying an equation, we can proceed by simplifying either of the sides of the equation and reducing it further to get it equal to the other side of the equation. Just remember the formulas, identities and trigonometric conversions and you will obtain the right answer. Take care of the signs and the expression and avoid any calculation errors.
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
There are also a few identities to keep in mind:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
Here, we will first simplify the left side of the equation (L.H.S) and equate it to the right side of the equation (R.H.S). This would prove our result.
Complete step-by-step solution:
Let us start with the L.H.S as
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta } \\
& \\
\end{align}$
Using $\cot \theta =\dfrac{1}{\tan \theta }$, we get
$\begin{align}
& \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{\dfrac{1}{{{\tan }^{3}}\theta }}{1+\dfrac{1}{{{\tan }^{2}}\theta }} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\tan }^{2}}\theta }{{{\tan }^{3}}\theta \left( 1+{{\tan }^{2}}\theta \right)} \\
& =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)} \\
\end{align}$
Taking L.C.M of denominator, we get
$\dfrac{{{\tan }^{4}}\theta +1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)}$
Replacing $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
$\begin{align}
& \dfrac{\dfrac{{{\sin }^{4}}\theta }{{{\cos }^{4}}\theta }+1}{\dfrac{\sin \theta }{\cos \theta }\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)} \\
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\dfrac{\sin \theta {{\cos }^{4}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{{{\cos }^{3}}\theta }} \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$=\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\sin \theta \cos \theta }$
Now, adding and subtracting $2{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ from the numerator,
$\begin{align}
& =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{{{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
\end{align}$
Using the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ , we get
$=\dfrac{{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }$
As we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$,
$\begin{align}
& =\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\
& =\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta \\
& \\
\end{align}$
As we know that,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
Hence, we get
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Comparing L.H.S with R.H.S, we get
$L.H.S=R.H.S$
Hence, we have proved the above result.
Note: Here is an alternative and much shorter way to prove the above expression:
L.H.S
$\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }\text{ }$
Using the identities
$\begin{align}
& {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\
& {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\
\end{align}$
We get,
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta -1 \right)}{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta -1 \right)}{\text{cosec}^{2}\theta }\text{ }$
On breaking the numerator further to separate different terms, we can write it as
$=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta \right)}{{{\sec }^{2}}\theta }-\dfrac{\tan \theta }{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta \right)}{\text{cosec}^{2}\theta }-\dfrac{\cot \theta }{\text{cosec}^{2}\theta }$
Using the following conversions
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\tan \theta -\sin \theta \cos \theta +\cot \theta -\sin \theta \cos \theta \text{ }$
$\begin{align}
& =\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-2\sin \theta \cos \theta \\
& =\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\cos \theta \sin \theta }-2\sin \theta \cos \theta \\
\end{align}$
Using the identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
$=\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta $
Using,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}$
We get,
$=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta $
Since, $L.H.S=R.H.S$, hence we have proved the above relation.
While solving questions related to verifying an equation, we can proceed by simplifying either of the sides of the equation and reducing it further to get it equal to the other side of the equation. Just remember the formulas, identities and trigonometric conversions and you will obtain the right answer. Take care of the signs and the expression and avoid any calculation errors.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

