
Prove the result of the following expression, $4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}=\dfrac{\pi }{4}$.
Answer
509.7k+ views
Hint:In order to prove the given equality, we should have some knowledge of a few inverse trigonometric formulas like, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$. We also have to remember that ${{\tan }^{-1}}1=\dfrac{\pi }{4}$. We can prove the given equality by using these formulas.
Complete step-by-step answer:
In this question, we have been asked to prove the equality, $4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}=\dfrac{\pi }{4}$. To prove this equality, we will first consider the left hand side or the LHS of the equation. So, we can write it as,
$LHS=4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}$
Which can also be written as,
$LHS=2\left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we know that $2{{\tan }^{-1}}x$ can be expressed as ${{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. So, by using this formula, we get the LHS as,
$LHS=2\left[ {{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \right]-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we know that, ${{\left( \dfrac{1}{5} \right)}^{2}}=\dfrac{1}{25}$. So, by applying it, we will simplify the LHS as follows,
$\begin{align}
& LHS=2{{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS=2{{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{25-1}{25}} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS=2{{\tan }^{-1}}\left( \dfrac{2\times 25}{24\times 5} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
\end{align}$
We can further write it as,
$LHS=2{{\tan }^{-1}}\left( \dfrac{5}{12} \right)-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we will again use the formula, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$, to simplify the above expression further. So, applying this, we can write the LHS as,
$LHS={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right)-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we will simplify it further by writing, ${{\left( \dfrac{5}{12} \right)}^{2}}=\dfrac{25}{144}$. So, we get the LHS as,
$\begin{align}
& LHS={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{5}{6} \right)}{1-\left( \dfrac{25}{144} \right)} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{5}{6}}{\dfrac{144-25}{144}} \right]-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{5\times 144}{6\times 119} \right]-{{\tan }^{-1}}\dfrac{1}{239} \\
\end{align}$
And we can further write it as,
$LHS={{\tan }^{-1}}\left[ \dfrac{120}{119} \right]-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we know that ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$, so, we can apply this formula and write the above expression as,
$LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{120}{119}-\dfrac{1}{239}}{1+\dfrac{120}{119}\times \dfrac{1}{239}} \right]$
Now, we will simplify it by taking the LCM of the numerator and the denominator. Hence, we can write the LHS as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{120\times 239-119}{119\times 239}}{\dfrac{119\times 239+120}{119\times 239}} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( 120\times 239-119 \right)\left( 119\times 239 \right)}{\left( 119\times 239+120 \right)\left( 119\times 239 \right)} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( 120\times 239-119 \right)}{\left( 119\times 239+120 \right)} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{28561}{28561} \right] \\
\end{align}$
We know that the common terms of the numerator and the denominator gets cancelled, so we get the LHS as,
$LHS={{\tan }^{-1}}1$
And from the trigonometric ratios, we know that $\tan \dfrac{\pi }{4}=1$, which can be expressed as, $\dfrac{\pi }{4}={{\tan }^{-1}}1$. Hence, we can write, $LHS=\dfrac{\pi }{4}$, which is the same as the right hand side or the RHS of the expression given in the question, so LHS = RHS.
Hence, we have proved the expression given in the question.
Note: There is a possibility of making calculation mistakes while solving this question as it involves a lot of calculations. And we, know that we have to get ${{\tan }^{-1}}1=\dfrac{\pi }{4}$ in the end, so we will come to know if we are on the right track in the solving of the question. Also, we should remember the formulas like, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$ to solve the question.
Complete step-by-step answer:
In this question, we have been asked to prove the equality, $4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}=\dfrac{\pi }{4}$. To prove this equality, we will first consider the left hand side or the LHS of the equation. So, we can write it as,
$LHS=4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}$
Which can also be written as,
$LHS=2\left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we know that $2{{\tan }^{-1}}x$ can be expressed as ${{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. So, by using this formula, we get the LHS as,
$LHS=2\left[ {{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \right]-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we know that, ${{\left( \dfrac{1}{5} \right)}^{2}}=\dfrac{1}{25}$. So, by applying it, we will simplify the LHS as follows,
$\begin{align}
& LHS=2{{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS=2{{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{25-1}{25}} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS=2{{\tan }^{-1}}\left( \dfrac{2\times 25}{24\times 5} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
\end{align}$
We can further write it as,
$LHS=2{{\tan }^{-1}}\left( \dfrac{5}{12} \right)-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we will again use the formula, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$, to simplify the above expression further. So, applying this, we can write the LHS as,
$LHS={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right)-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we will simplify it further by writing, ${{\left( \dfrac{5}{12} \right)}^{2}}=\dfrac{25}{144}$. So, we get the LHS as,
$\begin{align}
& LHS={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{5}{6} \right)}{1-\left( \dfrac{25}{144} \right)} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{5}{6}}{\dfrac{144-25}{144}} \right]-{{\tan }^{-1}}\dfrac{1}{239} \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{5\times 144}{6\times 119} \right]-{{\tan }^{-1}}\dfrac{1}{239} \\
\end{align}$
And we can further write it as,
$LHS={{\tan }^{-1}}\left[ \dfrac{120}{119} \right]-{{\tan }^{-1}}\dfrac{1}{239}$
Now, we know that ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$, so, we can apply this formula and write the above expression as,
$LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{120}{119}-\dfrac{1}{239}}{1+\dfrac{120}{119}\times \dfrac{1}{239}} \right]$
Now, we will simplify it by taking the LCM of the numerator and the denominator. Hence, we can write the LHS as,
$\begin{align}
& LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{120\times 239-119}{119\times 239}}{\dfrac{119\times 239+120}{119\times 239}} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( 120\times 239-119 \right)\left( 119\times 239 \right)}{\left( 119\times 239+120 \right)\left( 119\times 239 \right)} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( 120\times 239-119 \right)}{\left( 119\times 239+120 \right)} \right] \\
& \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{28561}{28561} \right] \\
\end{align}$
We know that the common terms of the numerator and the denominator gets cancelled, so we get the LHS as,
$LHS={{\tan }^{-1}}1$
And from the trigonometric ratios, we know that $\tan \dfrac{\pi }{4}=1$, which can be expressed as, $\dfrac{\pi }{4}={{\tan }^{-1}}1$. Hence, we can write, $LHS=\dfrac{\pi }{4}$, which is the same as the right hand side or the RHS of the expression given in the question, so LHS = RHS.
Hence, we have proved the expression given in the question.
Note: There is a possibility of making calculation mistakes while solving this question as it involves a lot of calculations. And we, know that we have to get ${{\tan }^{-1}}1=\dfrac{\pi }{4}$ in the end, so we will come to know if we are on the right track in the solving of the question. Also, we should remember the formulas like, $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and ${{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)$ to solve the question.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
