
Prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] .
Answer
532.8k+ views
Hint: To the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] , we have to consider the LHS. We have to first multiply the terms. Then, we have to apply $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . We have to simplify the terms and apply $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . After a few rearrangements, the LHS will be equal to the RHS.
Complete step by step solution:
We have to prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] . Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\dfrac{\cos A}{\sin A}\times \cos A+\dfrac{\sin A}{\cos A}\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\Rightarrow LHS=\sin A-\cos A+\cos A-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}-\sin A\]
We can further cancel the common terms.
\[\Rightarrow LHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow LHS=\left( -\dfrac{1}{\dfrac{1}{{{\cos }^{2}}A}}\times \dfrac{1}{\sin A} \right)+\left( \dfrac{1}{\dfrac{1}{{{\sin }^{2}}A}}\times \dfrac{1}{\cos A} \right) \\
& \Rightarrow LHS=-\dfrac{1}{{{\sec }^{2}}A}\times \csc A+\dfrac{1}{\csc {{\,}^{2}}A}\times \sec A \\
& \Rightarrow LHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}=RHS \\
\end{align}\]
Therefore, LHS = RHS.
Hence proved.
Note: Students must know the functions thoroughly and how to apply them. They must know that $\csc A=\dfrac{1}{\sin A}$ , $\sec A=\dfrac{1}{\cos A}$ , $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . They must begin the proof always from the LHS. We can prove the given identity in an alternate method.
Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\cot A\times \cos A+\tan A\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\begin{align}
& \Rightarrow LHS=\sin A-\cos A+\cos A-\cot A\times \cos A+\tan A\times \sin A-\sin A \\
& \Rightarrow LHS=-\cot A\cos A+\tan A\sin A...\left( i \right) \\
\end{align}\]
Now, let us consider the RHS.
\[\Rightarrow RHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow RHS=-\dfrac{\dfrac{1}{\sin A}}{\dfrac{1}{{{\cos }^{2}}A}}+\dfrac{\dfrac{1}{\cos A}}{\dfrac{1}{{{\sin }^{2}}A}} \\
& \Rightarrow RHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A} \\
\end{align}\]
Let us take the LCM.
\[\Rightarrow RHS=-\dfrac{{{\cos }^{3}}A}{\sin A\cos A}+\dfrac{{{\sin }^{3}}A}{\sin A\cos A}\]
Let us take cos A outside from the first term and sin A from the second term.
\[\Rightarrow RHS=-\cos A\times \dfrac{{{\cos }^{2}}A}{\sin A\cos A}+\sin A\times \dfrac{{{\sin }^{2}}A}{\sin A\cos A}\]
Let us cancel the common terms.
\[\Rightarrow RHS=-\cos A\times \dfrac{\cos A}{\sin A}+\sin A\times \dfrac{\sin A}{\cos A}\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow RHS=-\cos A\cot A+\sin A\tan A...\left( ii \right)\]
From (i) and (ii), we can see that LHS = RHS.
Hence proved.
Complete step by step solution:
We have to prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] . Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\dfrac{\cos A}{\sin A}\times \cos A+\dfrac{\sin A}{\cos A}\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\Rightarrow LHS=\sin A-\cos A+\cos A-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}-\sin A\]
We can further cancel the common terms.
\[\Rightarrow LHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow LHS=\left( -\dfrac{1}{\dfrac{1}{{{\cos }^{2}}A}}\times \dfrac{1}{\sin A} \right)+\left( \dfrac{1}{\dfrac{1}{{{\sin }^{2}}A}}\times \dfrac{1}{\cos A} \right) \\
& \Rightarrow LHS=-\dfrac{1}{{{\sec }^{2}}A}\times \csc A+\dfrac{1}{\csc {{\,}^{2}}A}\times \sec A \\
& \Rightarrow LHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}=RHS \\
\end{align}\]
Therefore, LHS = RHS.
Hence proved.
Note: Students must know the functions thoroughly and how to apply them. They must know that $\csc A=\dfrac{1}{\sin A}$ , $\sec A=\dfrac{1}{\cos A}$ , $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . They must begin the proof always from the LHS. We can prove the given identity in an alternate method.
Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\cot A\times \cos A+\tan A\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\begin{align}
& \Rightarrow LHS=\sin A-\cos A+\cos A-\cot A\times \cos A+\tan A\times \sin A-\sin A \\
& \Rightarrow LHS=-\cot A\cos A+\tan A\sin A...\left( i \right) \\
\end{align}\]
Now, let us consider the RHS.
\[\Rightarrow RHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow RHS=-\dfrac{\dfrac{1}{\sin A}}{\dfrac{1}{{{\cos }^{2}}A}}+\dfrac{\dfrac{1}{\cos A}}{\dfrac{1}{{{\sin }^{2}}A}} \\
& \Rightarrow RHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A} \\
\end{align}\]
Let us take the LCM.
\[\Rightarrow RHS=-\dfrac{{{\cos }^{3}}A}{\sin A\cos A}+\dfrac{{{\sin }^{3}}A}{\sin A\cos A}\]
Let us take cos A outside from the first term and sin A from the second term.
\[\Rightarrow RHS=-\cos A\times \dfrac{{{\cos }^{2}}A}{\sin A\cos A}+\sin A\times \dfrac{{{\sin }^{2}}A}{\sin A\cos A}\]
Let us cancel the common terms.
\[\Rightarrow RHS=-\cos A\times \dfrac{\cos A}{\sin A}+\sin A\times \dfrac{\sin A}{\cos A}\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow RHS=-\cos A\cot A+\sin A\tan A...\left( ii \right)\]
From (i) and (ii), we can see that LHS = RHS.
Hence proved.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

