
Prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] .
Answer
519.6k+ views
Hint: To the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] , we have to consider the LHS. We have to first multiply the terms. Then, we have to apply $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . We have to simplify the terms and apply $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . After a few rearrangements, the LHS will be equal to the RHS.
Complete step by step solution:
We have to prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] . Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\dfrac{\cos A}{\sin A}\times \cos A+\dfrac{\sin A}{\cos A}\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\Rightarrow LHS=\sin A-\cos A+\cos A-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}-\sin A\]
We can further cancel the common terms.
\[\Rightarrow LHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow LHS=\left( -\dfrac{1}{\dfrac{1}{{{\cos }^{2}}A}}\times \dfrac{1}{\sin A} \right)+\left( \dfrac{1}{\dfrac{1}{{{\sin }^{2}}A}}\times \dfrac{1}{\cos A} \right) \\
& \Rightarrow LHS=-\dfrac{1}{{{\sec }^{2}}A}\times \csc A+\dfrac{1}{\csc {{\,}^{2}}A}\times \sec A \\
& \Rightarrow LHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}=RHS \\
\end{align}\]
Therefore, LHS = RHS.
Hence proved.
Note: Students must know the functions thoroughly and how to apply them. They must know that $\csc A=\dfrac{1}{\sin A}$ , $\sec A=\dfrac{1}{\cos A}$ , $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . They must begin the proof always from the LHS. We can prove the given identity in an alternate method.
Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\cot A\times \cos A+\tan A\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\begin{align}
& \Rightarrow LHS=\sin A-\cos A+\cos A-\cot A\times \cos A+\tan A\times \sin A-\sin A \\
& \Rightarrow LHS=-\cot A\cos A+\tan A\sin A...\left( i \right) \\
\end{align}\]
Now, let us consider the RHS.
\[\Rightarrow RHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow RHS=-\dfrac{\dfrac{1}{\sin A}}{\dfrac{1}{{{\cos }^{2}}A}}+\dfrac{\dfrac{1}{\cos A}}{\dfrac{1}{{{\sin }^{2}}A}} \\
& \Rightarrow RHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A} \\
\end{align}\]
Let us take the LCM.
\[\Rightarrow RHS=-\dfrac{{{\cos }^{3}}A}{\sin A\cos A}+\dfrac{{{\sin }^{3}}A}{\sin A\cos A}\]
Let us take cos A outside from the first term and sin A from the second term.
\[\Rightarrow RHS=-\cos A\times \dfrac{{{\cos }^{2}}A}{\sin A\cos A}+\sin A\times \dfrac{{{\sin }^{2}}A}{\sin A\cos A}\]
Let us cancel the common terms.
\[\Rightarrow RHS=-\cos A\times \dfrac{\cos A}{\sin A}+\sin A\times \dfrac{\sin A}{\cos A}\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow RHS=-\cos A\cot A+\sin A\tan A...\left( ii \right)\]
From (i) and (ii), we can see that LHS = RHS.
Hence proved.
Complete step by step solution:
We have to prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A}\] . Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\dfrac{\cos A}{\sin A}\times \cos A+\dfrac{\sin A}{\cos A}\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\Rightarrow LHS=\sin A-\cos A+\cos A-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}-\sin A\]
We can further cancel the common terms.
\[\Rightarrow LHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow LHS=\left( -\dfrac{1}{\dfrac{1}{{{\cos }^{2}}A}}\times \dfrac{1}{\sin A} \right)+\left( \dfrac{1}{\dfrac{1}{{{\sin }^{2}}A}}\times \dfrac{1}{\cos A} \right) \\
& \Rightarrow LHS=-\dfrac{1}{{{\sec }^{2}}A}\times \csc A+\dfrac{1}{\csc {{\,}^{2}}A}\times \sec A \\
& \Rightarrow LHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}=RHS \\
\end{align}\]
Therefore, LHS = RHS.
Hence proved.
Note: Students must know the functions thoroughly and how to apply them. They must know that $\csc A=\dfrac{1}{\sin A}$ , $\sec A=\dfrac{1}{\cos A}$ , $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . They must begin the proof always from the LHS. We can prove the given identity in an alternate method.
Let us consider the LHS.
\[\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)\]
Let us multiply the terms.
\[\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\cot A\times \cos A+\tan A\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A\]
Let us cancel the common terms from the numerator and denominator and simplify.
\[\begin{align}
& \Rightarrow LHS=\sin A-\cos A+\cos A-\cot A\times \cos A+\tan A\times \sin A-\sin A \\
& \Rightarrow LHS=-\cot A\cos A+\tan A\sin A...\left( i \right) \\
\end{align}\]
Now, let us consider the RHS.
\[\Rightarrow RHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}\]
We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as
\[\begin{align}
& \Rightarrow RHS=-\dfrac{\dfrac{1}{\sin A}}{\dfrac{1}{{{\cos }^{2}}A}}+\dfrac{\dfrac{1}{\cos A}}{\dfrac{1}{{{\sin }^{2}}A}} \\
& \Rightarrow RHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A} \\
\end{align}\]
Let us take the LCM.
\[\Rightarrow RHS=-\dfrac{{{\cos }^{3}}A}{\sin A\cos A}+\dfrac{{{\sin }^{3}}A}{\sin A\cos A}\]
Let us take cos A outside from the first term and sin A from the second term.
\[\Rightarrow RHS=-\cos A\times \dfrac{{{\cos }^{2}}A}{\sin A\cos A}+\sin A\times \dfrac{{{\sin }^{2}}A}{\sin A\cos A}\]
Let us cancel the common terms.
\[\Rightarrow RHS=-\cos A\times \dfrac{\cos A}{\sin A}+\sin A\times \dfrac{\sin A}{\cos A}\]
We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes
\[\Rightarrow RHS=-\cos A\cot A+\sin A\tan A...\left( ii \right)\]
From (i) and (ii), we can see that LHS = RHS.
Hence proved.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

