
How do you prove the identity $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ ?
Answer
541.5k+ views
Hint: In order to prove $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ , we will multiply both the numerator and denominator with $ \tan x + \sec x + 1 $ . Then, simplify it and use trigonometric identity $ {\sec ^2}x = {\tan ^2}x + 1 $ . And, evaluating it we will get the RHS.
Complete step-by-step answer:
Now, let us consider the LHS of the equation,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} $
Let us multiply both the numerator and denominator with $ \tan x + \sec x + 1 $ ,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} \times \dfrac{{\tan x + \sec x + 1}}{{\tan x + \sec x + 1}} $
$ = \dfrac{{{{\tan }^2}x + \tan x\sec x + \tan x + \sec x\tan x + {{\sec }^2}x + \sec x - \tan x - \sec x - 1}}{{{{\tan }^2}x + \tan x\sec x + \tan x - \sec x\tan x - {{\sec }^2}x - \sec x + \tan x + \sec x + 1}} $
By cancelling and simplifying, we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\sec }^2}x - 1}}{{{{\tan }^2}x - {{\sec }^2}x + 2\tan x + 1}} $
We know from trigonometric identities, $ {\sec ^2}x = {\tan ^2}x + 1 $ .
By substituting we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\tan }^2}x + 1 - 1}}{{{{\tan }^2}x - {{\tan }^2}x - 1 + 2\tan x + 1}} $
$ = \dfrac{{2{{\tan }^2}x + 2\tan x\sec x}}{{2\tan x}} $
Take $ \tan x $ common out from the numerator.
$ = \dfrac{{2\tan x\left( {\tan x + \sec x} \right)}}{{2\tan x}} $
Now, cancel $ 2\tan x $ as it is common on both numerator and denominator, we have,
$ = \tan x + \sec x $
Therefore, LHS=RHS
Hence, $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ .
So, the correct answer is “ $ \tan x + \sec x $ ”.
Note: Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles
Complete step-by-step answer:
Now, let us consider the LHS of the equation,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} $
Let us multiply both the numerator and denominator with $ \tan x + \sec x + 1 $ ,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} \times \dfrac{{\tan x + \sec x + 1}}{{\tan x + \sec x + 1}} $
$ = \dfrac{{{{\tan }^2}x + \tan x\sec x + \tan x + \sec x\tan x + {{\sec }^2}x + \sec x - \tan x - \sec x - 1}}{{{{\tan }^2}x + \tan x\sec x + \tan x - \sec x\tan x - {{\sec }^2}x - \sec x + \tan x + \sec x + 1}} $
By cancelling and simplifying, we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\sec }^2}x - 1}}{{{{\tan }^2}x - {{\sec }^2}x + 2\tan x + 1}} $
We know from trigonometric identities, $ {\sec ^2}x = {\tan ^2}x + 1 $ .
By substituting we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\tan }^2}x + 1 - 1}}{{{{\tan }^2}x - {{\tan }^2}x - 1 + 2\tan x + 1}} $
$ = \dfrac{{2{{\tan }^2}x + 2\tan x\sec x}}{{2\tan x}} $
Take $ \tan x $ common out from the numerator.
$ = \dfrac{{2\tan x\left( {\tan x + \sec x} \right)}}{{2\tan x}} $
Now, cancel $ 2\tan x $ as it is common on both numerator and denominator, we have,
$ = \tan x + \sec x $
Therefore, LHS=RHS
Hence, $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ .
So, the correct answer is “ $ \tan x + \sec x $ ”.
Note: Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

