
How do you prove the identity $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ ?
Answer
556.2k+ views
Hint: In order to prove $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ , we will multiply both the numerator and denominator with $ \tan x + \sec x + 1 $ . Then, simplify it and use trigonometric identity $ {\sec ^2}x = {\tan ^2}x + 1 $ . And, evaluating it we will get the RHS.
Complete step-by-step answer:
Now, let us consider the LHS of the equation,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} $
Let us multiply both the numerator and denominator with $ \tan x + \sec x + 1 $ ,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} \times \dfrac{{\tan x + \sec x + 1}}{{\tan x + \sec x + 1}} $
$ = \dfrac{{{{\tan }^2}x + \tan x\sec x + \tan x + \sec x\tan x + {{\sec }^2}x + \sec x - \tan x - \sec x - 1}}{{{{\tan }^2}x + \tan x\sec x + \tan x - \sec x\tan x - {{\sec }^2}x - \sec x + \tan x + \sec x + 1}} $
By cancelling and simplifying, we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\sec }^2}x - 1}}{{{{\tan }^2}x - {{\sec }^2}x + 2\tan x + 1}} $
We know from trigonometric identities, $ {\sec ^2}x = {\tan ^2}x + 1 $ .
By substituting we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\tan }^2}x + 1 - 1}}{{{{\tan }^2}x - {{\tan }^2}x - 1 + 2\tan x + 1}} $
$ = \dfrac{{2{{\tan }^2}x + 2\tan x\sec x}}{{2\tan x}} $
Take $ \tan x $ common out from the numerator.
$ = \dfrac{{2\tan x\left( {\tan x + \sec x} \right)}}{{2\tan x}} $
Now, cancel $ 2\tan x $ as it is common on both numerator and denominator, we have,
$ = \tan x + \sec x $
Therefore, LHS=RHS
Hence, $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ .
So, the correct answer is “ $ \tan x + \sec x $ ”.
Note: Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles
Complete step-by-step answer:
Now, let us consider the LHS of the equation,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} $
Let us multiply both the numerator and denominator with $ \tan x + \sec x + 1 $ ,
$ = \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} \times \dfrac{{\tan x + \sec x + 1}}{{\tan x + \sec x + 1}} $
$ = \dfrac{{{{\tan }^2}x + \tan x\sec x + \tan x + \sec x\tan x + {{\sec }^2}x + \sec x - \tan x - \sec x - 1}}{{{{\tan }^2}x + \tan x\sec x + \tan x - \sec x\tan x - {{\sec }^2}x - \sec x + \tan x + \sec x + 1}} $
By cancelling and simplifying, we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\sec }^2}x - 1}}{{{{\tan }^2}x - {{\sec }^2}x + 2\tan x + 1}} $
We know from trigonometric identities, $ {\sec ^2}x = {\tan ^2}x + 1 $ .
By substituting we have,
$ = \dfrac{{{{\tan }^2}x + 2\tan x\sec x + {{\tan }^2}x + 1 - 1}}{{{{\tan }^2}x - {{\tan }^2}x - 1 + 2\tan x + 1}} $
$ = \dfrac{{2{{\tan }^2}x + 2\tan x\sec x}}{{2\tan x}} $
Take $ \tan x $ common out from the numerator.
$ = \dfrac{{2\tan x\left( {\tan x + \sec x} \right)}}{{2\tan x}} $
Now, cancel $ 2\tan x $ as it is common on both numerator and denominator, we have,
$ = \tan x + \sec x $
Therefore, LHS=RHS
Hence, $ \dfrac{{\tan x + \sec x - 1}}{{\tan x - \sec x + 1}} = \tan x + \sec x $ .
So, the correct answer is “ $ \tan x + \sec x $ ”.
Note: Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

