
How to prove the identity $\dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}$ ?
Answer
558.6k+ views
Hint: To prove the above identity, we are going to simplify the R.H.S of the above equation and make that simplification of this R.H.S to L.H.S of the above equation. To simplify R.H.S of the above equation, we are going to use $1={{\cos }^{2}}x+{{\sin }^{2}}x$ and also we are going to split $2{{\sin }^{2}}x$ as ${{\sin }^{2}}x+{{\sin }^{2}}x$ and then we will use the identity ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
Complete step by step answer:
The identity given in the above problem which we have to prove is as follows:
$\dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}$
Simplifying R.H.S of the above equation by splitting $2{{\sin }^{2}}x$ as ${{\sin }^{2}}x+{{\sin }^{2}}x$ and writing 1 as ${{\cos }^{2}}x+{{\sin }^{2}}x$ we get,
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{{{\sin }^{2}}x+{{\sin }^{2}}x-1}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}$
Taking -1 as common from the last two terms in the numerator of the R.H.S of the above equation we get,
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{{{\sin }^{2}}x-\left( -{{\sin }^{2}}x+1 \right)}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}$
In the R.H.S of the above equation, in the denominator expansion of ${{\left( \cos x+\sin x \right)}^{2}}$ is given and in the numerator we can write $1-{{\sin }^{2}}x$ as ${{\cos }^{2}}x$ then the above equation will look like:
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{{{\sin }^{2}}x-\left( {{\cos }^{2}}x \right)}{{{\left( \cos x+\sin x \right)}^{2}}}$
In the R.H.S of the above equation, we are going to use the identity i.e. ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$.
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{\left( \sin x-\cos x \right)\left( \sin x+\cos x \right)}{{{\left( \cos x+\sin x \right)}^{2}}}$
As you can see that $\left( \sin x+\cos x \right)$ is common in the numerator and the denominator in the R.H.S of the above equation so this expression $\left( \sin x+\cos x \right)$ will be cancelled out from the numerator and the denominator and we get,
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{\left( \sin x-\cos x \right)}{\left( \cos x+\sin x \right)}$
Now, in the above equation, L.H.S = R.H.S so we have proved the given identity.
Note: The alternate approach to prove the above identity is by multiplying and dividing the L.H.S of the given equation by $\sin x+\cos x$ we get,
$\begin{align}
& \dfrac{\sin x-\cos x}{\sin x+\cos x}\times \dfrac{\sin x+\cos x}{\sin x+\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
& \Rightarrow \dfrac{\left( \sin x-\cos x \right)\left( \sin x+\cos x \right)}{{{\left( \sin x+\cos x \right)}^{2}}}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
\end{align}$
Applying the identity ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ in the above equation we get,
$\Rightarrow \dfrac{\left( {{\sin }^{2}}x-{{\cos }^{2}}x \right)}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}$
In the above equation, we are going to use the following trigonometric identities:
$\begin{align}
& {{\cos }^{2}}x+{{\sin }^{2}}x=1 \\
& {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
\end{align}$
$\begin{align}
& \dfrac{\left( {{\sin }^{2}}x-\left( 1-{{\sin }^{2}}x \right) \right)}{1+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
& \Rightarrow \dfrac{{{\sin }^{2}}x-1+{{\sin }^{2}}x}{1+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
& \Rightarrow \dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
\end{align}$
As you can see that L.H.S = R.H.S so we have proved the given identity in this alternate approach.
Complete step by step answer:
The identity given in the above problem which we have to prove is as follows:
$\dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}$
Simplifying R.H.S of the above equation by splitting $2{{\sin }^{2}}x$ as ${{\sin }^{2}}x+{{\sin }^{2}}x$ and writing 1 as ${{\cos }^{2}}x+{{\sin }^{2}}x$ we get,
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{{{\sin }^{2}}x+{{\sin }^{2}}x-1}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}$
Taking -1 as common from the last two terms in the numerator of the R.H.S of the above equation we get,
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{{{\sin }^{2}}x-\left( -{{\sin }^{2}}x+1 \right)}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}$
In the R.H.S of the above equation, in the denominator expansion of ${{\left( \cos x+\sin x \right)}^{2}}$ is given and in the numerator we can write $1-{{\sin }^{2}}x$ as ${{\cos }^{2}}x$ then the above equation will look like:
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{{{\sin }^{2}}x-\left( {{\cos }^{2}}x \right)}{{{\left( \cos x+\sin x \right)}^{2}}}$
In the R.H.S of the above equation, we are going to use the identity i.e. ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$.
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{\left( \sin x-\cos x \right)\left( \sin x+\cos x \right)}{{{\left( \cos x+\sin x \right)}^{2}}}$
As you can see that $\left( \sin x+\cos x \right)$ is common in the numerator and the denominator in the R.H.S of the above equation so this expression $\left( \sin x+\cos x \right)$ will be cancelled out from the numerator and the denominator and we get,
$\Rightarrow \dfrac{\sin x-\cos x}{\sin x+\cos x}=\dfrac{\left( \sin x-\cos x \right)}{\left( \cos x+\sin x \right)}$
Now, in the above equation, L.H.S = R.H.S so we have proved the given identity.
Note: The alternate approach to prove the above identity is by multiplying and dividing the L.H.S of the given equation by $\sin x+\cos x$ we get,
$\begin{align}
& \dfrac{\sin x-\cos x}{\sin x+\cos x}\times \dfrac{\sin x+\cos x}{\sin x+\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
& \Rightarrow \dfrac{\left( \sin x-\cos x \right)\left( \sin x+\cos x \right)}{{{\left( \sin x+\cos x \right)}^{2}}}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
\end{align}$
Applying the identity ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ in the above equation we get,
$\Rightarrow \dfrac{\left( {{\sin }^{2}}x-{{\cos }^{2}}x \right)}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}$
In the above equation, we are going to use the following trigonometric identities:
$\begin{align}
& {{\cos }^{2}}x+{{\sin }^{2}}x=1 \\
& {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
\end{align}$
$\begin{align}
& \dfrac{\left( {{\sin }^{2}}x-\left( 1-{{\sin }^{2}}x \right) \right)}{1+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
& \Rightarrow \dfrac{{{\sin }^{2}}x-1+{{\sin }^{2}}x}{1+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
& \Rightarrow \dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x}=\dfrac{2{{\sin }^{2}}x-1}{1+2\sin x\cos x} \\
\end{align}$
As you can see that L.H.S = R.H.S so we have proved the given identity in this alternate approach.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

