
Prove the given trigonometric expression
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$ .
Answer
609.3k+ views
Hint: For solving this question first we will assume $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$. After that, we will use trigonometric formulas like $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ for the simplification of $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . Then, we will use the formula ${{\cot }^{-1}}\left( \cot x \right)=x\text{ }\left( \text{if }x\in \left( 0,\pi \right) \right)$ for proving the desired result.
Complete step-by-step solution -
Given:
We have to prove the following equation:
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.................\left( 1 \right) \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}..............\left( 2 \right) \\
& {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}.........\left( 3 \right) \\
& {{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.........\left( 4 \right) \\
& {{\cot }^{-1}}\left( \cot x \right)=x\text{ }\left( \text{if }x\in \left( 0,\pi \right) \right)..............\left( 5 \right) \\
\end{align}$
Now, before we simplify the term ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ , we should simplify $\sqrt{1+\sin x}$ and $\sqrt{1-\sin x}$ separately.
Now, let $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . So, we will use formulas from the above equations to simplify $A$ and $B$ separately.
Simplification of $A=\sqrt{1+\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& A=\sqrt{1+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (3) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow A=\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that, $\sin \theta $ and $\cos \theta $ are positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
& \Rightarrow A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}...................\left( 6 \right) \\
\end{align}\]
Simplification of $B=\sqrt{1-\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& B=\sqrt{1-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (4) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow B=\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that $\cos \theta >\sin \theta $ for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ so, $\cos \theta -\sin \theta $ will be positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
& \Rightarrow B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}...................\left( 7 \right) \\
\end{align}\]
Simplification of ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ :
Now, as per our assumption $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
\end{align}$
Now, we will put \[A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}\] from equation (6) and \[B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}\] from equation (7) in the above expression. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}+\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
\end{align}$
Now, we can write $\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\cot \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
\end{align}$
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . So, from formula from equation (5), we can write \[{{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)=\dfrac{x}{2}\] in the above expression. Then,
\[\begin{align}
& {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
& \Rightarrow \dfrac{x}{2} \\
\end{align}\]
Now, from the above result, we conclude that, ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$ .
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, avoid writing \[B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right|=\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] , it would be the wrong approach as \[\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] will be negative for $x\in \left( 0,\dfrac{\pi }{4} \right)$ . And avoid making calculation mistakes while solving the problem.
Complete step-by-step solution -
Given:
We have to prove the following equation:
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.................\left( 1 \right) \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}..............\left( 2 \right) \\
& {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}.........\left( 3 \right) \\
& {{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.........\left( 4 \right) \\
& {{\cot }^{-1}}\left( \cot x \right)=x\text{ }\left( \text{if }x\in \left( 0,\pi \right) \right)..............\left( 5 \right) \\
\end{align}$
Now, before we simplify the term ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ , we should simplify $\sqrt{1+\sin x}$ and $\sqrt{1-\sin x}$ separately.
Now, let $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . So, we will use formulas from the above equations to simplify $A$ and $B$ separately.
Simplification of $A=\sqrt{1+\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& A=\sqrt{1+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (3) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow A=\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that, $\sin \theta $ and $\cos \theta $ are positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
& \Rightarrow A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}...................\left( 6 \right) \\
\end{align}\]
Simplification of $B=\sqrt{1-\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& B=\sqrt{1-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (4) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow B=\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that $\cos \theta >\sin \theta $ for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ so, $\cos \theta -\sin \theta $ will be positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
& \Rightarrow B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}...................\left( 7 \right) \\
\end{align}\]
Simplification of ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ :
Now, as per our assumption $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
\end{align}$
Now, we will put \[A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}\] from equation (6) and \[B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}\] from equation (7) in the above expression. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}+\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
\end{align}$
Now, we can write $\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\cot \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
\end{align}$
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . So, from formula from equation (5), we can write \[{{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)=\dfrac{x}{2}\] in the above expression. Then,
\[\begin{align}
& {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
& \Rightarrow \dfrac{x}{2} \\
\end{align}\]
Now, from the above result, we conclude that, ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$ .
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, avoid writing \[B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right|=\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] , it would be the wrong approach as \[\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] will be negative for $x\in \left( 0,\dfrac{\pi }{4} \right)$ . And avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

