
Prove the given trigonometric expression
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$ .
Answer
513k+ views
Hint: For solving this question first we will assume $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$. After that, we will use trigonometric formulas like $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ for the simplification of $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . Then, we will use the formula ${{\cot }^{-1}}\left( \cot x \right)=x\text{ }\left( \text{if }x\in \left( 0,\pi \right) \right)$ for proving the desired result.
Complete step-by-step solution -
Given:
We have to prove the following equation:
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.................\left( 1 \right) \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}..............\left( 2 \right) \\
& {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}.........\left( 3 \right) \\
& {{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.........\left( 4 \right) \\
& {{\cot }^{-1}}\left( \cot x \right)=x\text{ }\left( \text{if }x\in \left( 0,\pi \right) \right)..............\left( 5 \right) \\
\end{align}$
Now, before we simplify the term ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ , we should simplify $\sqrt{1+\sin x}$ and $\sqrt{1-\sin x}$ separately.
Now, let $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . So, we will use formulas from the above equations to simplify $A$ and $B$ separately.
Simplification of $A=\sqrt{1+\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& A=\sqrt{1+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (3) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow A=\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that, $\sin \theta $ and $\cos \theta $ are positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
& \Rightarrow A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}...................\left( 6 \right) \\
\end{align}\]
Simplification of $B=\sqrt{1-\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& B=\sqrt{1-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (4) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow B=\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that $\cos \theta >\sin \theta $ for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ so, $\cos \theta -\sin \theta $ will be positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
& \Rightarrow B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}...................\left( 7 \right) \\
\end{align}\]
Simplification of ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ :
Now, as per our assumption $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
\end{align}$
Now, we will put \[A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}\] from equation (6) and \[B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}\] from equation (7) in the above expression. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}+\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
\end{align}$
Now, we can write $\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\cot \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
\end{align}$
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . So, from formula from equation (5), we can write \[{{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)=\dfrac{x}{2}\] in the above expression. Then,
\[\begin{align}
& {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
& \Rightarrow \dfrac{x}{2} \\
\end{align}\]
Now, from the above result, we conclude that, ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$ .
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, avoid writing \[B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right|=\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] , it would be the wrong approach as \[\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] will be negative for $x\in \left( 0,\dfrac{\pi }{4} \right)$ . And avoid making calculation mistakes while solving the problem.
Complete step-by-step solution -
Given:
We have to prove the following equation:
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$
Now, before we proceed we should know the following formulas:
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.................\left( 1 \right) \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}..............\left( 2 \right) \\
& {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}.........\left( 3 \right) \\
& {{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}.........\left( 4 \right) \\
& {{\cot }^{-1}}\left( \cot x \right)=x\text{ }\left( \text{if }x\in \left( 0,\pi \right) \right)..............\left( 5 \right) \\
\end{align}$
Now, before we simplify the term ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ , we should simplify $\sqrt{1+\sin x}$ and $\sqrt{1-\sin x}$ separately.
Now, let $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . So, we will use formulas from the above equations to simplify $A$ and $B$ separately.
Simplification of $A=\sqrt{1+\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& A=\sqrt{1+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+\sin x} \\
& \Rightarrow A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (3) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& A=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow A=\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that, $\sin \theta $ and $\cos \theta $ are positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& A=\left| \left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right) \right| \\
& \Rightarrow A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}...................\left( 6 \right) \\
\end{align}\]
Simplification of $B=\sqrt{1-\sin x}$ :
Now, we will use the formula from the equation to write $1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}$ . Then,
$\begin{align}
& B=\sqrt{1-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-\sin x} \\
& \Rightarrow B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
Now, we will use the formula from the equation (4) to write ${{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}$ in the above equation. Then,
\[\begin{align}
& B=\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
& \Rightarrow B=\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}} \\
& \Rightarrow B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
\end{align}\]
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . And we know that $\cos \theta >\sin \theta $ for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ so, $\cos \theta -\sin \theta $ will be positive for $\theta \in \left( 0,\dfrac{\pi }{8} \right)$ . Then,
\[\begin{align}
& B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right| \\
& \Rightarrow B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}...................\left( 7 \right) \\
\end{align}\]
Simplification of ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$ :
Now, as per our assumption $A=\sqrt{1+\sin x}$ and $B=\sqrt{1-\sin x}$ . Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
\end{align}$
Now, we will put \[A=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}\] from equation (6) and \[B=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}\] from equation (7) in the above expression. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{A+B}{A-B} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}+\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}-\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
\end{align}$
Now, we can write $\dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\cot \dfrac{x}{2}$ in the above equation. Then,
$\begin{align}
& {{\cot }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
\end{align}$
Now, as it is given that $x\in \left( 0,\dfrac{\pi }{4} \right)$ so, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$ . So, from formula from equation (5), we can write \[{{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)=\dfrac{x}{2}\] in the above expression. Then,
\[\begin{align}
& {{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right) \\
& \Rightarrow \dfrac{x}{2} \\
\end{align}\]
Now, from the above result, we conclude that, ${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right)$ .
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, avoid writing \[B=\left| \left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) \right|=\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] , it would be the wrong approach as \[\sin \dfrac{x}{2}-\cos \dfrac{x}{2}\] will be negative for $x\in \left( 0,\dfrac{\pi }{4} \right)$ . And avoid making calculation mistakes while solving the problem.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
