
Prove the given trigonometric equation
$\dfrac{{\cos \left( {90 - A} \right).\sin \left( {90 - A} \right)}}{{\tan \left( {90 - A} \right)}} = {\sin ^2}A$
Answer
616.5k+ views
Hint – In this question use trigonometric identities which are cos (90 – A) = sin (A), sin (90 – A) = cos (A) and tan (90 – A) = cot (A). Then using the basic trigonometric conversion of tan (A) in terms of cos (A) and sin(A) we can get the answer.
Complete step-by-step answer:
Given trigonometric equation is
$\dfrac{{\cos \left( {90 - A} \right).\sin \left( {90 - A} \right)}}{{\tan \left( {90 - A} \right)}} = {\sin ^2}A$
Proof –
Consider L.H.S
$ \Rightarrow \dfrac{{\cos \left( {90 - A} \right).\sin \left( {90 - A} \right)}}{{\tan \left( {90 - A} \right)}}$
Now as we know cos (90 – A) = sin (A), sin (90 – A) = cos (A) and tan (90 – A) = cot (A), so substitute these values in above equation we have,
$ \Rightarrow \dfrac{{\sin A.\cos A}}{{\cot A}}$
Now as we know that cot is the ratio of cosine to sine so use this property in above equation we have,
$ \Rightarrow \dfrac{{\sin A.\cos A}}{{\dfrac{{\cos A}}{{\sin A}}}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{\sin A.\cos A.\sin A}}{{\cos A}}$
Now as we see that cos (A) is cancel out from numerator and denominator so we have,
\[ \Rightarrow {\sin ^2}A\]
= R.H.S
Hence Proved.
Note – Problems of this kind are solemnly based upon trigonometric identities, it is advised to remember all trigonometric based identity. It’s difficult to grasp them all but practice always helps. Some of the important identities include sin (A+B) = sin A cos B + cos A sin B. The key point in this question is the breakdown of tan A into sin A and cos A, similarly sec A can also be written and it will simply be the converse of tan A.
Complete step-by-step answer:
Given trigonometric equation is
$\dfrac{{\cos \left( {90 - A} \right).\sin \left( {90 - A} \right)}}{{\tan \left( {90 - A} \right)}} = {\sin ^2}A$
Proof –
Consider L.H.S
$ \Rightarrow \dfrac{{\cos \left( {90 - A} \right).\sin \left( {90 - A} \right)}}{{\tan \left( {90 - A} \right)}}$
Now as we know cos (90 – A) = sin (A), sin (90 – A) = cos (A) and tan (90 – A) = cot (A), so substitute these values in above equation we have,
$ \Rightarrow \dfrac{{\sin A.\cos A}}{{\cot A}}$
Now as we know that cot is the ratio of cosine to sine so use this property in above equation we have,
$ \Rightarrow \dfrac{{\sin A.\cos A}}{{\dfrac{{\cos A}}{{\sin A}}}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{\sin A.\cos A.\sin A}}{{\cos A}}$
Now as we see that cos (A) is cancel out from numerator and denominator so we have,
\[ \Rightarrow {\sin ^2}A\]
= R.H.S
Hence Proved.
Note – Problems of this kind are solemnly based upon trigonometric identities, it is advised to remember all trigonometric based identity. It’s difficult to grasp them all but practice always helps. Some of the important identities include sin (A+B) = sin A cos B + cos A sin B. The key point in this question is the breakdown of tan A into sin A and cos A, similarly sec A can also be written and it will simply be the converse of tan A.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

