
Prove the given inverse trigonometric expression, \[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2},x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\] .
Answer
608.7k+ views
Hint: In this question, we have the inverse tan function, but we don’t have a tan function inside that inverse function. So, first, we need to convert that part in terms of tan. Using the formula \[\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\] , \[\sin x=2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}\] and the identity \[1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}\]. Put these all, and solve further.
Complete step-by-step solution -
According to the question, we have
\[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)\]……………(1)
In equation (1), we have the tan inverse of \[\dfrac{\cos x}{1+\sin x}\].
Here we have to remove this inverse of tan. For removing we have to make the term \[\dfrac{\cos x}{1+\sin x}\] in the form of tan.
Let’s proceed with the numerator.
We know that,
\[\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\]………….(2)
We also know that,
\[\sin x=2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}\]……………..(3)
\[1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}\]……………..(4)
Adding equation (3) and equation (4), we get
\[1+\sin x={{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}\] ………….(5)
From equation (1), we have \[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)\] .
Putting equation (2) and equation (5) in equation (1), we get
\[{{\tan }^{-1}}\left( \dfrac{{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}}{{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2\cos \dfrac{x}{2}.\sin \dfrac{x}{2}} \right)\] ……………(6)
We also know that,
\[{{A}^{2}}-{{B}^{2}}=\left( A+B \right).\text{ }\left( A-B \right)\] .
Similarily equation (2) can be written as,
\[\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right).\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)\] …………..(7)
And also,
\[{{\left( A+B \right)}^{2}}={{A}^{2}}+{{B}^{2}}+2.A.B\] .
Similarily equation (5) can be written as,
\[{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}\]…………….(8)
Using equation (7) and equation (8), we can write equation (6) as,
\[{{\tan }^{-1}}\left( \dfrac{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}} \right)\]
\[\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\] is common in the numerator as well as the denominator. So, we can cancel one \[\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\] in both numerator and denominator. Our equation will look like, \[{{\tan }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right)\] .
Dividing by \[\cos \dfrac{x}{2}\] in numerator and denominator, we get
\[{{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}{1+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}} \right)\]………………(9)
We know that, \[\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}\] ……………..(10)
Using equation (10), equation (9) can be written as
\[{{\tan }^{-1}}\left( \dfrac{1-\tan \dfrac{x}{2}}{1+\tan \dfrac{x}{2}} \right)\]
\[{{\tan }^{-1}}\left( \dfrac{1-\tan \dfrac{x}{2}}{1+1.\tan \dfrac{x}{2}} \right)\]……………(11)
We also know, \[\tan \dfrac{\pi }{4}=1\] ……………(12)
Using equation (12), equation (11) can be written as
\[{{\tan }^{-1}}\left( \dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} \right)\]
\[={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)\]
\[=\dfrac{\pi }{4}-\dfrac{x}{2}\]
So, \[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}\] .
Therefore, LHS=RHS.
Hence, proved.
Note: In this question, we have to be careful during the simplification of the inverse tan function. As \[\tan \dfrac{\pi }{4}=1\] and also \[\tan \left( \dfrac{5\pi }{4} \right)=1\] . If we take \[\tan \left( \dfrac{5\pi }{4} \right)=1\] , then it will be wrong. As in RHS, we have \[\dfrac{\pi }{4}\] , so we have to continue with \[\tan \left( \dfrac{\pi }{4} \right)=1\] .
Complete step-by-step solution -
According to the question, we have
\[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)\]……………(1)
In equation (1), we have the tan inverse of \[\dfrac{\cos x}{1+\sin x}\].
Here we have to remove this inverse of tan. For removing we have to make the term \[\dfrac{\cos x}{1+\sin x}\] in the form of tan.
Let’s proceed with the numerator.
We know that,
\[\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\]………….(2)
We also know that,
\[\sin x=2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}\]……………..(3)
\[1={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}\]……………..(4)
Adding equation (3) and equation (4), we get
\[1+\sin x={{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}\] ………….(5)
From equation (1), we have \[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)\] .
Putting equation (2) and equation (5) in equation (1), we get
\[{{\tan }^{-1}}\left( \dfrac{{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}}{{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2\cos \dfrac{x}{2}.\sin \dfrac{x}{2}} \right)\] ……………(6)
We also know that,
\[{{A}^{2}}-{{B}^{2}}=\left( A+B \right).\text{ }\left( A-B \right)\] .
Similarily equation (2) can be written as,
\[\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right).\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)\] …………..(7)
And also,
\[{{\left( A+B \right)}^{2}}={{A}^{2}}+{{B}^{2}}+2.A.B\] .
Similarily equation (5) can be written as,
\[{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}\]…………….(8)
Using equation (7) and equation (8), we can write equation (6) as,
\[{{\tan }^{-1}}\left( \dfrac{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}} \right)\]
\[\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\] is common in the numerator as well as the denominator. So, we can cancel one \[\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\] in both numerator and denominator. Our equation will look like, \[{{\tan }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right)\] .
Dividing by \[\cos \dfrac{x}{2}\] in numerator and denominator, we get
\[{{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}{1+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}} \right)\]………………(9)
We know that, \[\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}\] ……………..(10)
Using equation (10), equation (9) can be written as
\[{{\tan }^{-1}}\left( \dfrac{1-\tan \dfrac{x}{2}}{1+\tan \dfrac{x}{2}} \right)\]
\[{{\tan }^{-1}}\left( \dfrac{1-\tan \dfrac{x}{2}}{1+1.\tan \dfrac{x}{2}} \right)\]……………(11)
We also know, \[\tan \dfrac{\pi }{4}=1\] ……………(12)
Using equation (12), equation (11) can be written as
\[{{\tan }^{-1}}\left( \dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} \right)\]
\[={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)\]
\[=\dfrac{\pi }{4}-\dfrac{x}{2}\]
So, \[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}\] .
Therefore, LHS=RHS.
Hence, proved.
Note: In this question, we have to be careful during the simplification of the inverse tan function. As \[\tan \dfrac{\pi }{4}=1\] and also \[\tan \left( \dfrac{5\pi }{4} \right)=1\] . If we take \[\tan \left( \dfrac{5\pi }{4} \right)=1\] , then it will be wrong. As in RHS, we have \[\dfrac{\pi }{4}\] , so we have to continue with \[\tan \left( \dfrac{\pi }{4} \right)=1\] .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

