Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove the given expression \[{{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}={{\sin }^{-1}}\dfrac{56}{65}\] .

Answer
VerifiedVerified
510.9k+ views

Hint: In this question, we have different inverse trigonometric functions in LHS. In LHS, we have cosine inverse function and sine inverse function. On the other hand, in RHS, we have a sine inverse function. So, in LHS, our target is to make cosine inverse function into a sine inverse function. We consider \[\alpha ={{\cos }^{-1}}\dfrac{12}{13}\] and \[\beta ={{\sin }^{-1}}\dfrac{3}{5}\] . Transform \[\cos \alpha \] into \[sin\alpha \].

Then using the formula, \[\sin (\alpha +\beta )=sin\alpha .cos\beta +\sin \beta .cos\alpha \] , solve it further.


Complete step-by-step solution -

Let us assume,

\[\alpha ={{\cos }^{-1}}\dfrac{12}{13}\]……………..(1)

\[\beta ={{\sin }^{-1}}\dfrac{3}{5}\]………………..(2)

Taking cos in both LHS and RHS in equation(1), we get

\[\alpha ={{\cos }^{-1}}\dfrac{12}{13}\]

\[\Rightarrow \cos \alpha =cos\left( {{\cos }^{-1}}\dfrac{12}{13} \right)\] ……………….(3)

We know the property that, \[\cos ({{\cos }^{-1}}x)=x\] . Using this property in equation (3), we get

\[\cos \alpha =\dfrac{12}{13}\]………………..(4)

Taking sin in both LHS and RHS in equation(2), we get

\[\beta ={{\sin }^{-1}}\dfrac{3}{5}\]

\[\Rightarrow \sin \beta =\sin \left( {{\sin }^{-1}}\dfrac{3}{5} \right)\] ……………………..(5)

We know the property that, \[sin(si{{n}^{-1}}x)=x\] . Using this property in equation (5), we get

\[\sin \beta =\dfrac{3}{5}\]………………….(6)

According to the question, in LHS we have

\[{{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}\]………………(7)

Using equation(1) and equation(2) in equation(7), we have

\[\alpha +\beta\]………………(8)

This means we have to find the value of \[\alpha +\beta\] .

In RHS we have inverse sine function. So, here we have to take sin in equation(8).

\[\sin (\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta\]……………….(9)

From equation(4) and equation(6), we have the value of \[\cos \alpha\] and \[\sin \beta\] .

But we don’t have the value of \[sin\alpha\] and \[\cos \beta\] .

Also, we know the identity, \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]………….(10)

Using equation(4) and equation(6), we can get the value of \[sin\alpha\] and \[\cos \beta\] .

Replacing x by \[\alpha \] in equation (10), we get

\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]

\[\begin{align}

  & \Rightarrow {{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \\

 & \Rightarrow \sin \alpha =\sqrt{1-{{\cos }^{2}}\alpha } \\

\end{align}\]

Substituting the value of \[\cos \alpha =\dfrac{12}{13}\] , we get

\[\begin{align}

  & \sin \alpha =\sqrt{1-{{\cos }^{2}}\alpha } \\

 & \Rightarrow \sin \alpha =\sqrt{1-\dfrac{144}{169}} \\

 & \Rightarrow \sin \alpha =\sqrt{\dfrac{25}{169}} \\

 & \Rightarrow \sin \alpha =\dfrac{5}{13} \\

\end{align}\]

Similarly, replacing x by \[\beta \] in equation (10), we get

\[{{\sin }^{2}}\beta +{{\cos }^{2}}\beta =1\]

\[\begin{align}

  & \Rightarrow {{\cos }^{2}}\beta =1-si{{n}^{2}}\beta \\

 & \Rightarrow \cos \beta =\sqrt{1-si{{n}^{2}}\beta } \\

\end{align}\]

Substituting the value of \[sin\beta =\dfrac{3}{5}\] , we get

\[\begin{align}

  & \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\

 & \Rightarrow \cos \beta =\sqrt{1-\dfrac{9}{25}} \\

 & \Rightarrow \cos \beta =\sqrt{\dfrac{25-9}{25}} \\

 & \Rightarrow \cos \beta =\sqrt{\dfrac{16}{25}} \\

 & \Rightarrow \cos \beta =\dfrac{4}{5} \\

\end{align}\]

Now, we have got all the values required to solve equation(9).

\[\cos \beta =\dfrac{4}{5},\sin \beta =\dfrac{3}{5},\cos \alpha =\dfrac{12}{13},\sin \alpha =\dfrac{5}{13}\].

Putting these values in equation(9), we get

\[\begin{align}

  & \sin (\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta \\

 & =\dfrac{5}{13}.\dfrac{4}{5}+\dfrac{12}{13}.\dfrac{3}{5} \\

 & =\dfrac{20+36}{65} \\

 & =\dfrac{56}{65} \\

\end{align}\]

Now, we have

\[\sin (\alpha +\beta )=\dfrac{56}{65}\]

\[\Rightarrow \alpha +\beta ={{\sin }^{-1}}\left( \dfrac{56}{65} \right)\]……………….(10)

Equation(7) is equal to equation(10).

So, \[{{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}={{\sin }^{-1}}\dfrac{56}{65}\].

Therefore, LHS = RHS.

Hence, proved.


Note: This question can also be solved by using the Pythagoras theorem.

Assume,

\[\begin{align}

  & \alpha ={{\cos }^{-1}}\dfrac{12}{13} \\

 & \Rightarrow \cos \alpha =\dfrac{12}{13} \\

\end{align}\]

Now, using a right-angled triangle, we can get the value of \[\sin \alpha \].

 

seo images

Using the Pythagoras theorem, we can find the height.

Height = \[\sqrt{{{\left( hypotenuse \right)}^{2}}-{{\left( base \right)}^{2}}}\]

\[\begin{align}

  & \sqrt{{{\left( 13 \right)}^{2}}-{{(12)}^{2}}} \\

 & =\sqrt{169-144} \\

 & =\sqrt{25} \\

 & =5 \\

\end{align}\]

\[\begin{align}

  & \sin \alpha =\dfrac{height}{hypotenuse} \\

 & \sin \alpha =\dfrac{5}{13} \\

\end{align}\]

Similarly, assume

\[\begin{align}

  & \beta ={{\sin }^{-1}}\dfrac{3}{5} \\

 & \Rightarrow \sin \beta =\dfrac{3}{5} \\

\end{align}\]

Now, using a right-angled triangle, we can get the value of \[\sin \alpha \].

seo images

Using the Pythagoras theorem, we can find the base.

Base = \[\sqrt{{{\left( hypotenuse \right)}^{2}}-{{\left( height \right)}^{2}}}\]

\[\begin{align}

  & \sqrt{{{\left( 5 \right)}^{2}}-{{(3)}^{2}}} \\

 & =\sqrt{25-9} \\

 & =\sqrt{16} \\

 & =4 \\

\end{align}\]

\[\begin{align}

  & \cos \beta =\dfrac{base}{hypotenuse} \\

 & \cos \beta =\dfrac{4}{5} \\

\end{align}\]

Now, use the formula, \[\sin (\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta \], solve it further.