
Prove the following trigonometric expression:
${{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)$
Answer
509.7k+ views
Hint: We will start with the L.H.S. of the equation we will assume both the terms as a and b then we will find out the value of$\tan a\text{ and }\tan b$, once we find out these value then we will apply the trigonometric property: $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$, from this we will get the value of $\left( a+b \right)$ in the form of $\arctan \text{ or }{{\tan }^{-1}}$, finally we will re-substitute the values of a and b which we assumed initially and get our answer.
Complete step-by-step solution:
Let us first take the Left Hand Side of the equation we have: ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
Now, let $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ and $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ .......... Equation 1.
Let’s deal with them one by one and find out $\tan a\text{ and }\tan b$ ,
First, we will consider: $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ ,
We know that according to the standard inverse property for inverse function that :${{\sin }^{-1}}x=\theta \Rightarrow x=\sin \theta $ ,
Therefore, $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)\Rightarrow \sin a=\left( \dfrac{5}{13} \right)\text{ }........\text{Equation 2}\text{.}$
Now we know that: ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Therefore: $\cos a=\sqrt{1-{{\sin }^{2}}a}$ , we will now put the value of $\sin a$ from equation 2:
$\begin{align}
& \cos a=\sqrt{1-{{\sin }^{2}}a}\Rightarrow \cos a=\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \\
& \cos a=\sqrt{\dfrac{169-25}{169}}=\sqrt{\dfrac{144}{169}} \\
& \cos a=\dfrac{12}{13} \\
\end{align}$
Now we know that: $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ ,
Therefore,
$\tan a=\dfrac{\sin a}{\cos a}$ , we will now be putting the values of $\sin a\text{ and }\cos a$ into this:
$\tan a=\dfrac{\left( \dfrac{5}{13} \right)}{\left( \dfrac{12}{13} \right)}=\left( \dfrac{5}{12} \right)\Rightarrow \tan a=\left( \dfrac{5}{12} \right)\text{ }.........\text{Equation 3}\text{.}$
Similarly we will find $\tan b$ :
Now, we will consider: $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ ,
We know that according to the standard inverse property for inverse function that :${{\cos }^{-1}}x=\theta \Rightarrow x=\cos \theta $ ,
Therefore, $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\Rightarrow \cos b=\left( \dfrac{3}{5} \right)\text{ }........\text{Equation 4}\text{.}$
Now we know that: ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$
Therefore: $\sin b=\sqrt{1-{{\cos }^{2}}b}$ , we will now put the value of $\cos b$ from equation 4:
$\begin{align}
& \sin b=\sqrt{1-{{\cos }^{2}}b}\Rightarrow \sin b=\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\
& \sin b=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}} \\
& \sin b=\dfrac{4}{5} \\
\end{align}$
Now we know that: $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ ,
Therefore,
$\tan b=\dfrac{\sin b}{\cos b}$, we will now be putting the values of $\sin b\text{ and }\cos b$ into this:
$\tan b=\dfrac{\left( \dfrac{4}{5} \right)}{\left( \dfrac{3}{5} \right)}=\left( \dfrac{4}{3} \right)\Rightarrow \tan b=\left( \dfrac{4}{3} \right)\text{ }.........\text{Equation 5}\text{.}$
Now we have with us: $\tan a=\dfrac{5}{12}\text{ and }\tan b=\dfrac{4}{3}$ ,
We know the trigonometric property that : $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ , We will apply this property to the values obtained that is $\tan a=\dfrac{5}{12}\text{ and }\tan b=\dfrac{4}{3}$ ,
Now ,
\[\begin{align}
& \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}=\dfrac{\dfrac{5}{12}+\dfrac{4}{3}}{1-\left( \dfrac{5}{12}\times \dfrac{4}{3} \right)} \\
& \tan \left( a+b \right)=\dfrac{\dfrac{\left( 5\times 3 \right)+\left( 4\times 12 \right)}{12\times 3}}{1-\left( \dfrac{20}{36} \right)}=\dfrac{\dfrac{15+48}{36}}{\dfrac{36-20}{36}}=\dfrac{\dfrac{63}{36}}{\dfrac{16}{36}} \\
& \tan \left( a+b \right)=\dfrac{63}{16} \\
\end{align}\]
Therefore, \[\tan \left( a+b \right)=\dfrac{63}{16}\], we already know that according to the standard inverse property for inverse function that :${{\tan }^{-1}}x=\theta \Rightarrow x=\tan \theta $
So, \[\tan \left( a+b \right)=\dfrac{63}{16}\Rightarrow \left( a+b \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)\],
Putting the values of $a\text{ and }b$ from equation 1 that is $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ and $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ ,
in \[\left( a+b \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)\],
We will get: ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)$ .
Since, L.H.S.=R.H.S
Hence Proved.
Note: Whenever the question comes in the form of sin, cos, and tan, always try and convert the other trigonometric expression in tan form as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ so the calculation becomes easy this way. Always tell the property that you are using before applying it, do not directly jump into applying it.
Complete step-by-step solution:
Let us first take the Left Hand Side of the equation we have: ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$
Now, let $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ and $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ .......... Equation 1.
Let’s deal with them one by one and find out $\tan a\text{ and }\tan b$ ,
First, we will consider: $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ ,
We know that according to the standard inverse property for inverse function that :${{\sin }^{-1}}x=\theta \Rightarrow x=\sin \theta $ ,
Therefore, $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)\Rightarrow \sin a=\left( \dfrac{5}{13} \right)\text{ }........\text{Equation 2}\text{.}$
Now we know that: ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Therefore: $\cos a=\sqrt{1-{{\sin }^{2}}a}$ , we will now put the value of $\sin a$ from equation 2:
$\begin{align}
& \cos a=\sqrt{1-{{\sin }^{2}}a}\Rightarrow \cos a=\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \\
& \cos a=\sqrt{\dfrac{169-25}{169}}=\sqrt{\dfrac{144}{169}} \\
& \cos a=\dfrac{12}{13} \\
\end{align}$
Now we know that: $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ ,
Therefore,
$\tan a=\dfrac{\sin a}{\cos a}$ , we will now be putting the values of $\sin a\text{ and }\cos a$ into this:
$\tan a=\dfrac{\left( \dfrac{5}{13} \right)}{\left( \dfrac{12}{13} \right)}=\left( \dfrac{5}{12} \right)\Rightarrow \tan a=\left( \dfrac{5}{12} \right)\text{ }.........\text{Equation 3}\text{.}$
Similarly we will find $\tan b$ :
Now, we will consider: $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ ,
We know that according to the standard inverse property for inverse function that :${{\cos }^{-1}}x=\theta \Rightarrow x=\cos \theta $ ,
Therefore, $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\Rightarrow \cos b=\left( \dfrac{3}{5} \right)\text{ }........\text{Equation 4}\text{.}$
Now we know that: ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$
Therefore: $\sin b=\sqrt{1-{{\cos }^{2}}b}$ , we will now put the value of $\cos b$ from equation 4:
$\begin{align}
& \sin b=\sqrt{1-{{\cos }^{2}}b}\Rightarrow \sin b=\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\
& \sin b=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}} \\
& \sin b=\dfrac{4}{5} \\
\end{align}$
Now we know that: $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ ,
Therefore,
$\tan b=\dfrac{\sin b}{\cos b}$, we will now be putting the values of $\sin b\text{ and }\cos b$ into this:
$\tan b=\dfrac{\left( \dfrac{4}{5} \right)}{\left( \dfrac{3}{5} \right)}=\left( \dfrac{4}{3} \right)\Rightarrow \tan b=\left( \dfrac{4}{3} \right)\text{ }.........\text{Equation 5}\text{.}$
Now we have with us: $\tan a=\dfrac{5}{12}\text{ and }\tan b=\dfrac{4}{3}$ ,
We know the trigonometric property that : $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ , We will apply this property to the values obtained that is $\tan a=\dfrac{5}{12}\text{ and }\tan b=\dfrac{4}{3}$ ,
Now ,
\[\begin{align}
& \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}=\dfrac{\dfrac{5}{12}+\dfrac{4}{3}}{1-\left( \dfrac{5}{12}\times \dfrac{4}{3} \right)} \\
& \tan \left( a+b \right)=\dfrac{\dfrac{\left( 5\times 3 \right)+\left( 4\times 12 \right)}{12\times 3}}{1-\left( \dfrac{20}{36} \right)}=\dfrac{\dfrac{15+48}{36}}{\dfrac{36-20}{36}}=\dfrac{\dfrac{63}{36}}{\dfrac{16}{36}} \\
& \tan \left( a+b \right)=\dfrac{63}{16} \\
\end{align}\]
Therefore, \[\tan \left( a+b \right)=\dfrac{63}{16}\], we already know that according to the standard inverse property for inverse function that :${{\tan }^{-1}}x=\theta \Rightarrow x=\tan \theta $
So, \[\tan \left( a+b \right)=\dfrac{63}{16}\Rightarrow \left( a+b \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)\],
Putting the values of $a\text{ and }b$ from equation 1 that is $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ and $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ ,
in \[\left( a+b \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)\],
We will get: ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)$ .
Since, L.H.S.=R.H.S
Hence Proved.
Note: Whenever the question comes in the form of sin, cos, and tan, always try and convert the other trigonometric expression in tan form as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ so the calculation becomes easy this way. Always tell the property that you are using before applying it, do not directly jump into applying it.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
