
Prove the following trigonometric equation:
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$
Answer
607.2k+ views
Hint:As you can see the L.H.S of the given equation then you will find that $\cos x+\cos y$ is in the form of $\cos C+\cos D$ identity and $\sin x-\sin y$ is in the form of $\sin C-\sin D$ then apply these identities in the respective sine and cosine expression and then simplify.
Complete step-by-step answer:
The equation given in the question that we have to prove is:
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$
We are going to simplify L.H.S of the above equation and then try to resolve into R.H.S.
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}$
In the above expression, we can apply $\cos C+\cos D$ identity in $\cos x+\cos y$ as follows:
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos x+\cos y=2\cos \dfrac{x+y}{2}\cos \dfrac{x-y}{2}$
In the above expression, we can apply $\sin C-\sin D$ identity in $\sin x-\sin y$ as follows:
$\begin{align}
& \sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2} \\
& \sin x-\sin y=2\cos \dfrac{x+y}{2}\sin \dfrac{x-y}{2} \\
\end{align}$
Now, substituting these value of trigonometric expressions in sine and cosine in${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}$ we get,
$\begin{align}
& {{\left( 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \right)}^{2}}+{{\left( 2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \right)}^{2}} \\
& =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right){{\cos }^{2}}\left( \dfrac{x-y}{2} \right)+4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right){{\sin }^{2}}\left( \dfrac{x-y}{2} \right) \\
\end{align}$
Taking $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$ as common from the above expression we get,
$4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)\left( {{\cos }^{2}}\left( \dfrac{x-y}{2} \right)+{{\sin }^{2}}\left( \dfrac{x-y}{2} \right) \right)$
We know the trigonometric identity that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ . You can see this identity in the above expression where $\theta =\dfrac{x-y}{2}$. So applying this identity in the above expression we get,
$\begin{align}
& 4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)\left( 1 \right) \\
& =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \\
\end{align}$
The R.H.S of the given equation is $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$.
From the simplification of L.H.S of the given equation, the answer we got is $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given equation.
Note: There is an alternative way of proving the above equation is as follows:
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$
We are going to simplify the L.H.S of the above equation.
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}$
Now, we are going to open the square of cosine and sine expressions in the above equation we get,
${{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y+{{\sin }^{2}}x+{{\sin }^{2}}y-2\sin x\sin y$
Rearranging the above expression we get,
${{\cos }^{2}}x+{{\sin }^{2}}x+{{\cos }^{2}}y+{{\sin }^{2}}y+2\cos x\cos y-2\sin x\sin y$
Now, we can use the identity of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ in the above expression.
$1+1+2\left( \cos x\cos y-\sin x\sin y \right)$
We know that $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$. Using this cosine relation in the above equation we get,
$\begin{align}
& 2+2\cos \left( x+y \right) \\
& =2\left( 1+\cos \left( x+y \right) \right) \\
\end{align}$
From the double angle of cosine identity we know that $1+\cos 2\theta =2{{\cos }^{2}}\theta $. So in the above expression we can use the relation $x+y=2\theta $ . Using this double angle cosine identity in the above expression we get,
$\begin{align}
& 2\left( 2{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \right) \\
& =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \\
\end{align}$
R.H.S of the given equation is $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$.
And from the above simplification of L.H.S of the given equation, we are getting answer as$4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$ which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given equation.
Complete step-by-step answer:
The equation given in the question that we have to prove is:
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$
We are going to simplify L.H.S of the above equation and then try to resolve into R.H.S.
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}$
In the above expression, we can apply $\cos C+\cos D$ identity in $\cos x+\cos y$ as follows:
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos x+\cos y=2\cos \dfrac{x+y}{2}\cos \dfrac{x-y}{2}$
In the above expression, we can apply $\sin C-\sin D$ identity in $\sin x-\sin y$ as follows:
$\begin{align}
& \sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2} \\
& \sin x-\sin y=2\cos \dfrac{x+y}{2}\sin \dfrac{x-y}{2} \\
\end{align}$
Now, substituting these value of trigonometric expressions in sine and cosine in${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}$ we get,
$\begin{align}
& {{\left( 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \right)}^{2}}+{{\left( 2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \right)}^{2}} \\
& =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right){{\cos }^{2}}\left( \dfrac{x-y}{2} \right)+4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right){{\sin }^{2}}\left( \dfrac{x-y}{2} \right) \\
\end{align}$
Taking $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$ as common from the above expression we get,
$4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)\left( {{\cos }^{2}}\left( \dfrac{x-y}{2} \right)+{{\sin }^{2}}\left( \dfrac{x-y}{2} \right) \right)$
We know the trigonometric identity that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ . You can see this identity in the above expression where $\theta =\dfrac{x-y}{2}$. So applying this identity in the above expression we get,
$\begin{align}
& 4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)\left( 1 \right) \\
& =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \\
\end{align}$
The R.H.S of the given equation is $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$.
From the simplification of L.H.S of the given equation, the answer we got is $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given equation.
Note: There is an alternative way of proving the above equation is as follows:
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$
We are going to simplify the L.H.S of the above equation.
${{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}$
Now, we are going to open the square of cosine and sine expressions in the above equation we get,
${{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y+{{\sin }^{2}}x+{{\sin }^{2}}y-2\sin x\sin y$
Rearranging the above expression we get,
${{\cos }^{2}}x+{{\sin }^{2}}x+{{\cos }^{2}}y+{{\sin }^{2}}y+2\cos x\cos y-2\sin x\sin y$
Now, we can use the identity of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ in the above expression.
$1+1+2\left( \cos x\cos y-\sin x\sin y \right)$
We know that $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$. Using this cosine relation in the above equation we get,
$\begin{align}
& 2+2\cos \left( x+y \right) \\
& =2\left( 1+\cos \left( x+y \right) \right) \\
\end{align}$
From the double angle of cosine identity we know that $1+\cos 2\theta =2{{\cos }^{2}}\theta $. So in the above expression we can use the relation $x+y=2\theta $ . Using this double angle cosine identity in the above expression we get,
$\begin{align}
& 2\left( 2{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \right) \\
& =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \\
\end{align}$
R.H.S of the given equation is $4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$.
And from the above simplification of L.H.S of the given equation, we are getting answer as$4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)$ which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given equation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

