
Prove the following trigonometric equation if $a\cos ecA = p$ and $b\cot A = q$
$\dfrac{{{p^2}}}{{{a^2}}} - \dfrac{{{q^2}}}{{{b^2}}} = 1$.
Answer
602.1k+ views
Hint: In order to solve this problem use the formulas $\cos ecx = \dfrac{1}{{\sin x}}{\text{ and }}\cot x = \dfrac{{\cos x}}{{\sin x}}$. Using these and solving will provide you the right answer.
Complete step-by-step answer:
The given equation is $\dfrac{{{p^2}}}{{{a^2}}} - \dfrac{{{q^2}}}{{{b^2}}} = 1$………..(1)
It is also given that $a\cos ecA = p$ and $b\cot A = q$.
On putting the value of p and q in (1) we get,
The equation as:
$
\dfrac{{{a^2}\cos e{c^2}A}}{{{a^2}}} - \dfrac{{{b^2}{{\cot }^2}A}}{{{b^2}}} = 1 \\
\cos e{c^2}A - {\cot ^2}A = 1 \\
\dfrac{1}{{{{\sin }^2}A}} - \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} = \dfrac{{1 - {{\cos }^2}A}}{{{{\sin }^2}A}} = \dfrac{{{{\sin }^2}A}}{{{{\sin }^2}A}} = 1\,\,\,\,\,\,\,\,\,\,\,\,({\text{Since 1 - }}{\cos ^2}x = {\sin ^2}x) \\
$
Hence, it is proved that LHS and RHS both are equal.
Note: In this problem you need to solve the equation by putting the values given in the question and using the formulas $\cos ec x = \dfrac{1}{{\sin x}}{\text{ and }}\cot x = \dfrac{{\cos x}}{{\sin x}}$ to get the answer to this problem. But we can substitute the value of a as well and we can directly prove using the identity $\cos e{c^2}A - {\cot ^2}A = 1$.
Complete step-by-step answer:
The given equation is $\dfrac{{{p^2}}}{{{a^2}}} - \dfrac{{{q^2}}}{{{b^2}}} = 1$………..(1)
It is also given that $a\cos ecA = p$ and $b\cot A = q$.
On putting the value of p and q in (1) we get,
The equation as:
$
\dfrac{{{a^2}\cos e{c^2}A}}{{{a^2}}} - \dfrac{{{b^2}{{\cot }^2}A}}{{{b^2}}} = 1 \\
\cos e{c^2}A - {\cot ^2}A = 1 \\
\dfrac{1}{{{{\sin }^2}A}} - \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} = \dfrac{{1 - {{\cos }^2}A}}{{{{\sin }^2}A}} = \dfrac{{{{\sin }^2}A}}{{{{\sin }^2}A}} = 1\,\,\,\,\,\,\,\,\,\,\,\,({\text{Since 1 - }}{\cos ^2}x = {\sin ^2}x) \\
$
Hence, it is proved that LHS and RHS both are equal.
Note: In this problem you need to solve the equation by putting the values given in the question and using the formulas $\cos ec x = \dfrac{1}{{\sin x}}{\text{ and }}\cot x = \dfrac{{\cos x}}{{\sin x}}$ to get the answer to this problem. But we can substitute the value of a as well and we can directly prove using the identity $\cos e{c^2}A - {\cot ^2}A = 1$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

