
Prove the following:
\[\tan {10^ \circ } + \tan {70^ \circ } - \tan {50^ \circ } = \sqrt 3 \].
Answer
497.1k+ views
Hint: We will solve this question using the sum and difference formula of tangent function. So, we will first write \[\tan {70^ \circ }\] as \[\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and similarly we will write \[\tan {50^ \circ }\] as \[\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\]. Then we will use the formula for \[\tan \left( {A + B} \right)\] and \[\tan \left( {A - B} \right)\] for expanding \[\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\].
Formula used:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
\[\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}\]
Complete step by step answer:
Writing the L.H.S:
\[\tan {10^ \circ } + \tan {70^ \circ } - \tan {50^ \circ }\]
Now we will break \[\tan {70^ \circ }\] and \[\tan {50^ \circ }\]. So,
\[\tan {10^ \circ } + \tan {70^ \circ } - \tan {50^ \circ } = \tan {10^ \circ } + \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\]
Now we will use the formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
for expanding \[\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\].
\[ \Rightarrow \tan {10^ \circ } + \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right) = \tan {10^ \circ } + \left( {\dfrac{{\tan {{60}^ \circ } + \tan {{10}^ \circ }}}{{1 - \tan {{60}^ \circ }.\tan {{10}^ \circ }}}} \right) - \left( {\dfrac{{\tan {{60}^ \circ } - \tan {{10}^ \circ }}}{{1 + \tan {{60}^ \circ }.\tan {{10}^ \circ }}}} \right)\]
Now we will put the value of \[\tan {60^ \circ } = \sqrt 3 \] in the above equation. So, we will get
\[ = \tan {10^ \circ } + \left( {\dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \sqrt 3 \tan {{10}^ \circ }}}} \right) - \left( {\dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \sqrt 3 \tan {{10}^ \circ }}}} \right)\]
Now we will solve it further by taking the LCM of the denominator.
LCM of \[\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\] and \[\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)\] is equal to \[\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right)\].
Here we have found the LCM by simply multiplying the terms using the formula:
\[\left( {a + b} \right) \times \left( {a - b} \right) = {a^2} - {b^2}\].
Now using the LCM and solving further,
\[ = \dfrac{{\tan {{10}^ \circ }\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right) + \left( {\sqrt 3 + \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right) - \left( {\sqrt 3 - \tan {{10}^ \circ }} \right)\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Solving the numerator using the distributive property:
\[ = \dfrac{{\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ } + \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ } - \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } - \sqrt 3 {{\tan }^2}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Now we will simplify the numerator of the above fraction by cancelling and combining the terms.
We will get,
\[ = \dfrac{{9\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Now we take \[3\] common in the numerator, the it becomes:
\[ = \dfrac{{3\left( {3\tan {{10}^ \circ } - {{\tan }^3}{{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Now we can observe that this is equal to \[3\tan 3A\] in which \[A = {10^ \circ }\]. So, we get;
\[ = 3\tan \left( {3 \times {{10}^ \circ }} \right)\]
\[ = 3\tan \left( {{{30}^ \circ }} \right)\]
Now we will put the value of \[\tan \left( {{{30}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\].
\[ = 3 \times \dfrac{1}{{\sqrt 3 }}\]
\[ = \sqrt 3 \]
Which is equal to the RHS.
Note:
One important point that one should keep in mind here is while using the formula for \[\tan \left( {A + B} \right)\] we write \[1 - \tan A.\tan B\] in the denominator and while writing the formula for \[\tan \left( {A - B} \right)\] we write \[\left( {1 + \tan A.\tan B} \right)\], that is just the opposite. Another point to note is that we have to take care of how the angles are expressed. Here, in this question all the angles are in degrees so we haven’t converted any of them, but in another question some angles might be given in degrees and some angles in radians. So, there we can convert all the angles into degrees or we can convert to radians.
Formula used:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
\[\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}\]
Complete step by step answer:
Writing the L.H.S:
\[\tan {10^ \circ } + \tan {70^ \circ } - \tan {50^ \circ }\]
Now we will break \[\tan {70^ \circ }\] and \[\tan {50^ \circ }\]. So,
\[\tan {10^ \circ } + \tan {70^ \circ } - \tan {50^ \circ } = \tan {10^ \circ } + \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\]
Now we will use the formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
for expanding \[\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right)\] and \[\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right)\].
\[ \Rightarrow \tan {10^ \circ } + \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right) = \tan {10^ \circ } + \left( {\dfrac{{\tan {{60}^ \circ } + \tan {{10}^ \circ }}}{{1 - \tan {{60}^ \circ }.\tan {{10}^ \circ }}}} \right) - \left( {\dfrac{{\tan {{60}^ \circ } - \tan {{10}^ \circ }}}{{1 + \tan {{60}^ \circ }.\tan {{10}^ \circ }}}} \right)\]
Now we will put the value of \[\tan {60^ \circ } = \sqrt 3 \] in the above equation. So, we will get
\[ = \tan {10^ \circ } + \left( {\dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \sqrt 3 \tan {{10}^ \circ }}}} \right) - \left( {\dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \sqrt 3 \tan {{10}^ \circ }}}} \right)\]
Now we will solve it further by taking the LCM of the denominator.
LCM of \[\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\] and \[\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)\] is equal to \[\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right)\].
Here we have found the LCM by simply multiplying the terms using the formula:
\[\left( {a + b} \right) \times \left( {a - b} \right) = {a^2} - {b^2}\].
Now using the LCM and solving further,
\[ = \dfrac{{\tan {{10}^ \circ }\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right) + \left( {\sqrt 3 + \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right) - \left( {\sqrt 3 - \tan {{10}^ \circ }} \right)\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Solving the numerator using the distributive property:
\[ = \dfrac{{\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ } + \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ } - \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } - \sqrt 3 {{\tan }^2}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Now we will simplify the numerator of the above fraction by cancelling and combining the terms.
We will get,
\[ = \dfrac{{9\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Now we take \[3\] common in the numerator, the it becomes:
\[ = \dfrac{{3\left( {3\tan {{10}^ \circ } - {{\tan }^3}{{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}\]
Now we can observe that this is equal to \[3\tan 3A\] in which \[A = {10^ \circ }\]. So, we get;
\[ = 3\tan \left( {3 \times {{10}^ \circ }} \right)\]
\[ = 3\tan \left( {{{30}^ \circ }} \right)\]
Now we will put the value of \[\tan \left( {{{30}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\].
\[ = 3 \times \dfrac{1}{{\sqrt 3 }}\]
\[ = \sqrt 3 \]
Which is equal to the RHS.
Note:
One important point that one should keep in mind here is while using the formula for \[\tan \left( {A + B} \right)\] we write \[1 - \tan A.\tan B\] in the denominator and while writing the formula for \[\tan \left( {A - B} \right)\] we write \[\left( {1 + \tan A.\tan B} \right)\], that is just the opposite. Another point to note is that we have to take care of how the angles are expressed. Here, in this question all the angles are in degrees so we haven’t converted any of them, but in another question some angles might be given in degrees and some angles in radians. So, there we can convert all the angles into degrees or we can convert to radians.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

