
Prove the following statement.
\[\left( \dfrac{1}{{{\sec }^{2}}\alpha -{{\cos }^{2}}\alpha }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\alpha -{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha =\dfrac{1-{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }{2+{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }\]
Answer
609.6k+ views
Hint: To prove this question, we should know that sec α can be written as $\dfrac{1}{\cos \alpha }$ and cosec α can be written as $\dfrac{1}{\sin \alpha }$. Also, we should know a few algebraic identities like, ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. By using these identities we can prove the statement.
Complete step-by-step answer:
In this question, we have been asked to prove \[\left( \dfrac{1}{{{\sec }^{2}}\alpha -{{\cos }^{2}}\alpha }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\alpha -{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha =\dfrac{1-{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }{2+{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }\]. To prove this relation, we will first consider the left hand side of the relation. So, we can write it as,
$LHS=\left( \dfrac{1}{{{\sec }^{2}}\alpha -{{\cos }^{2}}\alpha }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\alpha -{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha $
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }$ and $\operatorname{cosec}\alpha =\dfrac{1}{\sin \alpha }$. So, we will get the LHS as,
$LHS=\left( \dfrac{1}{\dfrac{1}{{{\cos }^{2}}\alpha }-{{\cos }^{2}}\alpha }+\dfrac{1}{\dfrac{1}{{{\sin }^{2}}\alpha }-{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha $
Now, we will take the LCM of each term of the LHS. So, we will get,
$\begin{align}
& LHS=\left( \dfrac{1}{\dfrac{1-{{\cos }^{4}}\alpha }{{{\cos }^{2}}\alpha }}+\dfrac{1}{\dfrac{1-{{\sin }^{4}}\alpha }{{{\sin }^{2}}\alpha }} \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \\
& LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{1-{{\cos }^{4}}\alpha }+\dfrac{{{\sin }^{2}}\alpha }{1-{{\sin }^{4}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}} \\
\end{align}$
We can write ${{\cos }^{4}}\alpha $ as ${{\left( {{\cos }^{2}}\alpha \right)}^{2}}$ and ${{\sin }^{4}}\alpha $ as ${{\left( {{\sin }^{2}}\alpha \right)}^{2}}$. So, we will get, $LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{1-{{\left( {{\cos }^{2}}\alpha \right)}^{2}}}+\dfrac{{{\sin }^{2}}\alpha }{1-{{\left( {{\sin }^{2}}\alpha \right)}^{2}}} \right){{\sin }^{2}}\alpha {{\cos }^{2}}$
Now, we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. So, on applying this in the above expression we will get,
$LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{\left( 1-{{\cos }^{2}}\alpha \right)\left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{2}}\alpha }{\left( 1-{{\sin }^{2}}\alpha \right)\left( 1+{{\sin }^{2}}\alpha \right)} \right){{\sin }^{2}}\alpha {{\cos }^{2}}$
Now, we also know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$. So, we can write \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] and $1-{{\sin }^{2}}\alpha ={{\cos }^{2}}\alpha $. Therefore, we will get the LHS as,
$LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\alpha \left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{2}}\alpha }{{{\cos }^{2}}\alpha \left( 1+{{\sin }^{2}}\alpha \right)} \right){{\sin }^{2}}\alpha {{\cos }^{2}}$
Now, we will open the brackets to simply it,
$LHS=\left( \dfrac{{{\cos }^{4}}\alpha {{\sin }^{2}}\alpha }{{{\sin }^{2}}\alpha \left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{4}}\alpha {{\cos }^{2}}\alpha }{{{\cos }^{2}}\alpha \left( 1+{{\sin }^{2}}\alpha \right)} \right)$
We know that common terms get cancelled out, so we get,
$LHS=\dfrac{{{\cos }^{4}}\alpha }{\left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{4}}\alpha }{\left( 1+{{\sin }^{2}}\alpha \right)}$
Now, we will take the LCM of both the terms. So, we will get,
\[\begin{align}
& LHS=\dfrac{{{\cos }^{4}}\alpha \left( 1+{{\sin }^{2}}\alpha \right)+{{\sin }^{4}}\alpha \left( 1+{{\cos }^{2}}\alpha \right)}{\left( 1+{{\cos }^{2}}\alpha \right)\left( 1+{{\sin }^{2}}\alpha \right)} \\
& LHS=\dfrac{{{\cos }^{4}}\alpha +{{\cos }^{4}}\alpha {{\sin }^{2}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{4}}\alpha {{\cos }^{2}}\alpha }{1+{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha } \\
\end{align}\]
Now, we can see that \[{{\cos }^{4}}\alpha {{\sin }^{2}}\alpha +{{\sin }^{4}}\alpha {{\cos }^{2}}\alpha \] can be written as \[{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)\]. So, we will get,
\[LHS=\dfrac{{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}{1+{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }\]
We also know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ so, we can write the LHS as,
\[\begin{align}
& LHS=\dfrac{{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \left( 1 \right)}{1+1+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
& LHS=\dfrac{{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
\end{align}\]
Now, we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. So, we can say that ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$. Therefore, we can write \[{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha \] as \[{{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \]. So, we will get,
\[\begin{align}
& LHS=\dfrac{{{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
& LHS=\dfrac{{{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
\end{align}\]
Now, we will again put ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$. So, we will get,
\[\begin{align}
& LHS=\dfrac{1-{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
& LHS=RHS \\
\end{align}\]
Hence proved.
Note: In this question, there are high possibilities that a student may make calculation mistakes. Also, they could make a mistake while applying the algebraic and trigonometric formulas. So, the students have to be careful while solving the question.
Complete step-by-step answer:
In this question, we have been asked to prove \[\left( \dfrac{1}{{{\sec }^{2}}\alpha -{{\cos }^{2}}\alpha }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\alpha -{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha =\dfrac{1-{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }{2+{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }\]. To prove this relation, we will first consider the left hand side of the relation. So, we can write it as,
$LHS=\left( \dfrac{1}{{{\sec }^{2}}\alpha -{{\cos }^{2}}\alpha }+\dfrac{1}{{{\operatorname{cosec}}^{2}}\alpha -{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha $
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }$ and $\operatorname{cosec}\alpha =\dfrac{1}{\sin \alpha }$. So, we will get the LHS as,
$LHS=\left( \dfrac{1}{\dfrac{1}{{{\cos }^{2}}\alpha }-{{\cos }^{2}}\alpha }+\dfrac{1}{\dfrac{1}{{{\sin }^{2}}\alpha }-{{\sin }^{2}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha $
Now, we will take the LCM of each term of the LHS. So, we will get,
$\begin{align}
& LHS=\left( \dfrac{1}{\dfrac{1-{{\cos }^{4}}\alpha }{{{\cos }^{2}}\alpha }}+\dfrac{1}{\dfrac{1-{{\sin }^{4}}\alpha }{{{\sin }^{2}}\alpha }} \right){{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \\
& LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{1-{{\cos }^{4}}\alpha }+\dfrac{{{\sin }^{2}}\alpha }{1-{{\sin }^{4}}\alpha } \right){{\sin }^{2}}\alpha {{\cos }^{2}} \\
\end{align}$
We can write ${{\cos }^{4}}\alpha $ as ${{\left( {{\cos }^{2}}\alpha \right)}^{2}}$ and ${{\sin }^{4}}\alpha $ as ${{\left( {{\sin }^{2}}\alpha \right)}^{2}}$. So, we will get, $LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{1-{{\left( {{\cos }^{2}}\alpha \right)}^{2}}}+\dfrac{{{\sin }^{2}}\alpha }{1-{{\left( {{\sin }^{2}}\alpha \right)}^{2}}} \right){{\sin }^{2}}\alpha {{\cos }^{2}}$
Now, we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. So, on applying this in the above expression we will get,
$LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{\left( 1-{{\cos }^{2}}\alpha \right)\left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{2}}\alpha }{\left( 1-{{\sin }^{2}}\alpha \right)\left( 1+{{\sin }^{2}}\alpha \right)} \right){{\sin }^{2}}\alpha {{\cos }^{2}}$
Now, we also know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$. So, we can write \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] and $1-{{\sin }^{2}}\alpha ={{\cos }^{2}}\alpha $. Therefore, we will get the LHS as,
$LHS=\left( \dfrac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\alpha \left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{2}}\alpha }{{{\cos }^{2}}\alpha \left( 1+{{\sin }^{2}}\alpha \right)} \right){{\sin }^{2}}\alpha {{\cos }^{2}}$
Now, we will open the brackets to simply it,
$LHS=\left( \dfrac{{{\cos }^{4}}\alpha {{\sin }^{2}}\alpha }{{{\sin }^{2}}\alpha \left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{4}}\alpha {{\cos }^{2}}\alpha }{{{\cos }^{2}}\alpha \left( 1+{{\sin }^{2}}\alpha \right)} \right)$
We know that common terms get cancelled out, so we get,
$LHS=\dfrac{{{\cos }^{4}}\alpha }{\left( 1+{{\cos }^{2}}\alpha \right)}+\dfrac{{{\sin }^{4}}\alpha }{\left( 1+{{\sin }^{2}}\alpha \right)}$
Now, we will take the LCM of both the terms. So, we will get,
\[\begin{align}
& LHS=\dfrac{{{\cos }^{4}}\alpha \left( 1+{{\sin }^{2}}\alpha \right)+{{\sin }^{4}}\alpha \left( 1+{{\cos }^{2}}\alpha \right)}{\left( 1+{{\cos }^{2}}\alpha \right)\left( 1+{{\sin }^{2}}\alpha \right)} \\
& LHS=\dfrac{{{\cos }^{4}}\alpha +{{\cos }^{4}}\alpha {{\sin }^{2}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{4}}\alpha {{\cos }^{2}}\alpha }{1+{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha } \\
\end{align}\]
Now, we can see that \[{{\cos }^{4}}\alpha {{\sin }^{2}}\alpha +{{\sin }^{4}}\alpha {{\cos }^{2}}\alpha \] can be written as \[{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)\]. So, we will get,
\[LHS=\dfrac{{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}{1+{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha }\]
We also know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$ so, we can write the LHS as,
\[\begin{align}
& LHS=\dfrac{{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha \left( 1 \right)}{1+1+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
& LHS=\dfrac{{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
\end{align}\]
Now, we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. So, we can say that ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$. Therefore, we can write \[{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha \] as \[{{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \]. So, we will get,
\[\begin{align}
& LHS=\dfrac{{{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-2{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
& LHS=\dfrac{{{\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)}^{2}}-{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
\end{align}\]
Now, we will again put ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$. So, we will get,
\[\begin{align}
& LHS=\dfrac{1-{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha }{2+{{\sin }^{2}}\alpha {{\cos }^{2}}\alpha } \\
& LHS=RHS \\
\end{align}\]
Hence proved.
Note: In this question, there are high possibilities that a student may make calculation mistakes. Also, they could make a mistake while applying the algebraic and trigonometric formulas. So, the students have to be careful while solving the question.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

