
Prove the following statement:
\[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]
Answer
609.6k+ views
Hint: First of all, consider the LHS of the given equation and convert the whole expression in terms of sin A and cos A by using the formula \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and simplify the expression. Now, divide numerator and denominator by sin A and use \[\dfrac{\cos \theta }{\sin \theta }=\cot \theta \] to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]. Let us consider the LHS of the equation given in the question.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. So by substituting the value of tan A in terms of sin A and cos A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\cot }^{2}}A}\]
We also know that \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]. So by substituting the value of cot A in terms of cos A and sin A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}\]
\[E=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\sin }^{2}}A}}\]
By further simplification, we get,
\[E=\left( \dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A+{{\sin }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. By using this in the above expression, we get,
\[E=\left( \dfrac{1}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{1} \right)\]
\[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\].
Note: Students can also solve this question in the following way. Let us consider the LHS of the given equation.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
By substituting \[\tan A=\dfrac{1}{\cot A}\], we get,
\[E=\dfrac{1+\dfrac{1}{{{\cot }^{2}}A}}{1+{{\cot }^{2}}A}\]
\[E=\dfrac{\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}}{\left( 1+{{\cot }^{2}}A \right)}\]
\[E=\dfrac{\left( 1+{{\cot }^{2}}A \right)}{\left( {{\cot }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\]
Now by canceling the like terms and substituting \[\cot A=\dfrac{\cos A}{\sin A}\], we get,
\[E=\dfrac{1}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
So, we get, \[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}=RHS\]
So, LHS = RHS
Hence proved.
Complete step-by-step answer:
In this question, we have to prove that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]. Let us consider the LHS of the equation given in the question.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. So by substituting the value of tan A in terms of sin A and cos A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\cot }^{2}}A}\]
We also know that \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]. So by substituting the value of cot A in terms of cos A and sin A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}\]
\[E=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\sin }^{2}}A}}\]
By further simplification, we get,
\[E=\left( \dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A+{{\sin }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. By using this in the above expression, we get,
\[E=\left( \dfrac{1}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{1} \right)\]
\[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\].
Note: Students can also solve this question in the following way. Let us consider the LHS of the given equation.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
By substituting \[\tan A=\dfrac{1}{\cot A}\], we get,
\[E=\dfrac{1+\dfrac{1}{{{\cot }^{2}}A}}{1+{{\cot }^{2}}A}\]
\[E=\dfrac{\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}}{\left( 1+{{\cot }^{2}}A \right)}\]
\[E=\dfrac{\left( 1+{{\cot }^{2}}A \right)}{\left( {{\cot }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\]
Now by canceling the like terms and substituting \[\cot A=\dfrac{\cos A}{\sin A}\], we get,
\[E=\dfrac{1}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
So, we get, \[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}=RHS\]
So, LHS = RHS
Hence proved.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

