
Prove the following statement:
\[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]
Answer
594.9k+ views
Hint: First of all, consider the LHS of the given equation and convert the whole expression in terms of sin A and cos A by using the formula \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and simplify the expression. Now, divide numerator and denominator by sin A and use \[\dfrac{\cos \theta }{\sin \theta }=\cot \theta \] to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]. Let us consider the LHS of the equation given in the question.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. So by substituting the value of tan A in terms of sin A and cos A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\cot }^{2}}A}\]
We also know that \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]. So by substituting the value of cot A in terms of cos A and sin A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}\]
\[E=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\sin }^{2}}A}}\]
By further simplification, we get,
\[E=\left( \dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A+{{\sin }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. By using this in the above expression, we get,
\[E=\left( \dfrac{1}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{1} \right)\]
\[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\].
Note: Students can also solve this question in the following way. Let us consider the LHS of the given equation.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
By substituting \[\tan A=\dfrac{1}{\cot A}\], we get,
\[E=\dfrac{1+\dfrac{1}{{{\cot }^{2}}A}}{1+{{\cot }^{2}}A}\]
\[E=\dfrac{\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}}{\left( 1+{{\cot }^{2}}A \right)}\]
\[E=\dfrac{\left( 1+{{\cot }^{2}}A \right)}{\left( {{\cot }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\]
Now by canceling the like terms and substituting \[\cot A=\dfrac{\cos A}{\sin A}\], we get,
\[E=\dfrac{1}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
So, we get, \[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}=RHS\]
So, LHS = RHS
Hence proved.
Complete step-by-step answer:
In this question, we have to prove that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]. Let us consider the LHS of the equation given in the question.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. So by substituting the value of tan A in terms of sin A and cos A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\cot }^{2}}A}\]
We also know that \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]. So by substituting the value of cot A in terms of cos A and sin A in the above expression, we get,
\[E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}\]
\[E=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\sin }^{2}}A}}\]
By further simplification, we get,
\[E=\left( \dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A+{{\sin }^{2}}A} \right)\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. By using this in the above expression, we get,
\[E=\left( \dfrac{1}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{1} \right)\]
\[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\]
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\].
Note: Students can also solve this question in the following way. Let us consider the LHS of the given equation.
\[E=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}\]
By substituting \[\tan A=\dfrac{1}{\cot A}\], we get,
\[E=\dfrac{1+\dfrac{1}{{{\cot }^{2}}A}}{1+{{\cot }^{2}}A}\]
\[E=\dfrac{\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}}{\left( 1+{{\cot }^{2}}A \right)}\]
\[E=\dfrac{\left( 1+{{\cot }^{2}}A \right)}{\left( {{\cot }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\]
Now by canceling the like terms and substituting \[\cot A=\dfrac{\cos A}{\sin A}\], we get,
\[E=\dfrac{1}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
So, we get, \[E=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}=RHS\]
So, LHS = RHS
Hence proved.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

