
Prove the following statement:
\[\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A\]
Answer
609.6k+ views
Hint: Consider the LHS of the given equation and take (cosec A – 1) (cosec A + 1) as LCM and simplify the given expression. Now use \[{{\operatorname{cosec}}^{2}}\theta -1={{\cot }^{2}}\theta \] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\] to prove the desired result.
Complete step-by-step answer:
Here, we have to prove that \[\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A\]
Let us consider the LHS of the expression given in the question.
\[E=\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}\]
By taking the LCM as (cosec A – 1) (cosec A + 1) and simplifying the above expression, we get,
\[E=\dfrac{\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A+1 \right)+\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A-1 \right)}{\left( \operatorname{cosec}A-1 \right)\left( \operatorname{cosec}A+1 \right)}\]
We know that \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]. By using this in the denominator of the above expression, we get,
\[E=\dfrac{\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A+1 \right)+\operatorname{cosec}A\left( \operatorname{cosec}A-1 \right)}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
By simplifying the above expression, we get,
\[E=\dfrac{{{\operatorname{cosec}}^{2}}A+\operatorname{cosec}A+{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
By canceling cosec A from the numerator of the above expression, we get,
\[E=\dfrac{{{\operatorname{cosec}}^{2}}A+{{\operatorname{cosec}}^{2}}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
\[E=\dfrac{2{{\operatorname{cosec}}^{2}}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
We know that \[{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =1\] or \[{{\operatorname{cosec}}^{2}}\theta -1={{\cot }^{2}}\theta \]. By using this in the denominator of the above expression, we get,
\[E=\dfrac{2{{\operatorname{cosec}}^{2}}A}{{{\cot }^{2}}A}\]
Now, we know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]
By using this in the above expression, we get,
\[E=\dfrac{2{{\left( \dfrac{1}{\sin A} \right)}^{2}}}{{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}\]
\[E=\dfrac{\dfrac{2}{{{\sin }^{2}}A}}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
\[E=\left( \dfrac{2}{{{\sin }^{2}}A} \right)\times \left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A} \right)\]
By canceling the like terms from the above equation, we get,
\[E=\dfrac{2}{{{\cos }^{2}}A}\]
We know that \[\cos \theta =\dfrac{1}{\sec \theta }\]. By using this in the above expression, we get,
\[E=\dfrac{2}{{{\left( \dfrac{1}{\sec A} \right)}^{2}}}\]
\[E=2{{\left( \sec A \right)}^{2}}\]
\[E=2{{\sec }^{2}}A\]
E = RHS
So, we get, LHS = RHS
Hence proved
So, we have proved that \[\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A\]
Note: Some students are often uncomfortable with \[\operatorname{cosec}\theta \] or \[\sec \theta \] or \[\cot \theta \] that are the reciprocals. So, in that case, students could also convert the given LHS terms of \[\sin \theta \] by writing \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and then solving the expression in the same way in terms of \[\sin \theta \] and \[\cos \theta \] to get the desired result. Students should always learn the formula in terms of \[\operatorname{cosec}\theta ,\cot \theta \] and \[\sec \theta \] also and not only in terms of \[\sin \theta ,\cos \theta ,\tan \theta \] to solve the question faster and easily.
Complete step-by-step answer:
Here, we have to prove that \[\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A\]
Let us consider the LHS of the expression given in the question.
\[E=\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}\]
By taking the LCM as (cosec A – 1) (cosec A + 1) and simplifying the above expression, we get,
\[E=\dfrac{\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A+1 \right)+\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A-1 \right)}{\left( \operatorname{cosec}A-1 \right)\left( \operatorname{cosec}A+1 \right)}\]
We know that \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]. By using this in the denominator of the above expression, we get,
\[E=\dfrac{\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A+1 \right)+\operatorname{cosec}A\left( \operatorname{cosec}A-1 \right)}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
By simplifying the above expression, we get,
\[E=\dfrac{{{\operatorname{cosec}}^{2}}A+\operatorname{cosec}A+{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
By canceling cosec A from the numerator of the above expression, we get,
\[E=\dfrac{{{\operatorname{cosec}}^{2}}A+{{\operatorname{cosec}}^{2}}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
\[E=\dfrac{2{{\operatorname{cosec}}^{2}}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}\]
We know that \[{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =1\] or \[{{\operatorname{cosec}}^{2}}\theta -1={{\cot }^{2}}\theta \]. By using this in the denominator of the above expression, we get,
\[E=\dfrac{2{{\operatorname{cosec}}^{2}}A}{{{\cot }^{2}}A}\]
Now, we know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]
By using this in the above expression, we get,
\[E=\dfrac{2{{\left( \dfrac{1}{\sin A} \right)}^{2}}}{{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}\]
\[E=\dfrac{\dfrac{2}{{{\sin }^{2}}A}}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}\]
\[E=\left( \dfrac{2}{{{\sin }^{2}}A} \right)\times \left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A} \right)\]
By canceling the like terms from the above equation, we get,
\[E=\dfrac{2}{{{\cos }^{2}}A}\]
We know that \[\cos \theta =\dfrac{1}{\sec \theta }\]. By using this in the above expression, we get,
\[E=\dfrac{2}{{{\left( \dfrac{1}{\sec A} \right)}^{2}}}\]
\[E=2{{\left( \sec A \right)}^{2}}\]
\[E=2{{\sec }^{2}}A\]
E = RHS
So, we get, LHS = RHS
Hence proved
So, we have proved that \[\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A\]
Note: Some students are often uncomfortable with \[\operatorname{cosec}\theta \] or \[\sec \theta \] or \[\cot \theta \] that are the reciprocals. So, in that case, students could also convert the given LHS terms of \[\sin \theta \] by writing \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\] and then solving the expression in the same way in terms of \[\sin \theta \] and \[\cos \theta \] to get the desired result. Students should always learn the formula in terms of \[\operatorname{cosec}\theta ,\cot \theta \] and \[\sec \theta \] also and not only in terms of \[\sin \theta ,\cos \theta ,\tan \theta \] to solve the question faster and easily.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

