
Prove the following statement:
$2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $.
Answer
609.3k+ views
Hint: In order to prove the relation given in the question, we should know two basic trigonometric identities, which are, $1+{{\tan }^{2}}\alpha ={{\sec }^{2}}\alpha $ and $1+{{\cot }^{2}}\alpha ={{\operatorname{cosec}}^{2}}\alpha $. We should also know that ${{\left( a+b \right)}^{2}}$ is expanded as $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)$. By using these properties, we can prove the given relation.
Complete step-by-step answer:
In this question, we have been asked to prove that, $2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $. To prove the same, we will first consider the left hand side or the LHS of the given equation. So, we can write it as, $LHS=2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha $
Now, we know that ${{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha $ and ${{\operatorname{cosec}}^{2}}\alpha =1+{{\cot }^{2}}\alpha $. So, applying that on the LHS, we can write the LHS as follows,
$LHS=2\left( 1+{{\tan }^{2}}\alpha \right)-{{\left( 1+{{\tan }^{2}}\alpha \right)}^{2}}-2\left( 1+{{\cot }^{2}}\alpha \right)+{{\left( 1+{{\cot }^{2}}\alpha \right)}^{2}}$
Now, we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$, so we can write ${{\left( 1+{{\tan }^{2}}\alpha \right)}^{2}}=1+{{\tan }^{4}}\alpha +2{{\tan }^{2}}\alpha $ and similarly we can write ${{\left( 1+{{\cot }^{2}}\alpha \right)}^{2}}=1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha $. So, by substituting these values in the equation on the LHS, we get,
$LHS=2\left( 1+{{\tan }^{2}}\alpha \right)-\left( 1+{{\tan }^{4}}\alpha +2{{\tan }^{2}}\alpha \right)-2\left( 1+{{\cot }^{2}}\alpha \right)+\left( 1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha \right)$
After simplifying the above equation, we get the LHS as,
$LHS=2+2{{\tan }^{2}}\alpha -1-{{\tan }^{4}}\alpha -2{{\tan }^{2}}\alpha -2-2{{\cot }^{2}}\alpha +1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha $
Now, we will add the like terms algebraically in the above equation. So, we get the LHS as,
$\begin{align}
& LHS=\left( 2-2+1-1 \right)+\left( 2{{\tan }^{2}}\alpha -2{{\tan }^{2}}\alpha \right)+\left( {{\cot }^{4}}\alpha \right)+\left( 2{{\cot }^{2}}\alpha -2{{\cot }^{2}}\alpha \right)-{{\tan }^{4}}\alpha \\
& \Rightarrow LHS=0+0+{{\cot }^{4}}\alpha +0-{{\tan }^{4}}\alpha \\
\end{align}$
We can further simplify and write the above equation as,
$LHS={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $ =RHS.
Therefore, LHS = RHS.
Hence, we have proved the statement given in the question, that is, $2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $.
Note: There is a high possibility in this question that we may make calculation mistakes. So, we have to be very patient and careful while solving this question. Also we must remember that, $1+{{\tan }^{2}}\alpha ={{\sec }^{2}}\alpha $ and $1+{{\cot }^{2}}\alpha ={{\operatorname{cosec}}^{2}}\alpha $.
Complete step-by-step answer:
In this question, we have been asked to prove that, $2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $. To prove the same, we will first consider the left hand side or the LHS of the given equation. So, we can write it as, $LHS=2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha $
Now, we know that ${{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha $ and ${{\operatorname{cosec}}^{2}}\alpha =1+{{\cot }^{2}}\alpha $. So, applying that on the LHS, we can write the LHS as follows,
$LHS=2\left( 1+{{\tan }^{2}}\alpha \right)-{{\left( 1+{{\tan }^{2}}\alpha \right)}^{2}}-2\left( 1+{{\cot }^{2}}\alpha \right)+{{\left( 1+{{\cot }^{2}}\alpha \right)}^{2}}$
Now, we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$, so we can write ${{\left( 1+{{\tan }^{2}}\alpha \right)}^{2}}=1+{{\tan }^{4}}\alpha +2{{\tan }^{2}}\alpha $ and similarly we can write ${{\left( 1+{{\cot }^{2}}\alpha \right)}^{2}}=1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha $. So, by substituting these values in the equation on the LHS, we get,
$LHS=2\left( 1+{{\tan }^{2}}\alpha \right)-\left( 1+{{\tan }^{4}}\alpha +2{{\tan }^{2}}\alpha \right)-2\left( 1+{{\cot }^{2}}\alpha \right)+\left( 1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha \right)$
After simplifying the above equation, we get the LHS as,
$LHS=2+2{{\tan }^{2}}\alpha -1-{{\tan }^{4}}\alpha -2{{\tan }^{2}}\alpha -2-2{{\cot }^{2}}\alpha +1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha $
Now, we will add the like terms algebraically in the above equation. So, we get the LHS as,
$\begin{align}
& LHS=\left( 2-2+1-1 \right)+\left( 2{{\tan }^{2}}\alpha -2{{\tan }^{2}}\alpha \right)+\left( {{\cot }^{4}}\alpha \right)+\left( 2{{\cot }^{2}}\alpha -2{{\cot }^{2}}\alpha \right)-{{\tan }^{4}}\alpha \\
& \Rightarrow LHS=0+0+{{\cot }^{4}}\alpha +0-{{\tan }^{4}}\alpha \\
\end{align}$
We can further simplify and write the above equation as,
$LHS={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $ =RHS.
Therefore, LHS = RHS.
Hence, we have proved the statement given in the question, that is, $2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha $.
Note: There is a high possibility in this question that we may make calculation mistakes. So, we have to be very patient and careful while solving this question. Also we must remember that, $1+{{\tan }^{2}}\alpha ={{\sec }^{2}}\alpha $ and $1+{{\cot }^{2}}\alpha ={{\operatorname{cosec}}^{2}}\alpha $.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

