
Prove the following:
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Answer
594.9k+ views
Hint: First of all, take the LHS of the given equation. Now use \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \] and \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \] and then take the required value of n and \[\theta \] to reduce the given expression. Now get the values of \[\sin {{30}^{o}},\sin {{60}^{o}},etc.\] from the trigonometric table to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that \[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos
\left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]. Let us consider the LHS of the equation given in the question.
\[LHS=\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin
{{330}^{o}}\]
We know that, \[\sin \left( -\theta \right)=-\sin \theta \text{ and }\cos \left( -\theta
\right)=\cos \theta \]. By using these in the above equation, we get,
\[LHS=-\sin \left( {{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( {{660}^{o}} \right)\sin
{{330}^{o}}\]
\[LHS=-\sin \left( {{360}^{o}}+{{60}^{o}} \right)\cos \left( {{360}^{o}}+{{30}^{o}} \right)+\cos
\left( {{720}^{o}}-{{60}^{o}} \right)\sin \left( {{360}^{o}}-{{30}^{o}} \right).....\left( i \right)\]
We know that \[\sin \left( 2n\pi +\theta \right)=\sin \theta \]. So, by substituting \[n=1,\pi
={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\sin \left( {{360}^{o}}+{{60}^{o}} \right)=\sin {{60}^{o}}\]
Also, we know that \[\cos \left( 2n\pi +\theta \right)=\cos \theta \]. So, by substituting
\[n=1,\pi ={{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\cos \left( {{360}^{o}}+{{30}^{o}} \right)=\cos {{30}^{o}}\]
By substituting the values of \[\cos \left( {{390}^{o}} \right)\] and \[\sin \left( {{420}^{o}} \right)\] in equation (i), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\left( \cos{{720}^{o}}-{{60}^{o}} \right)\left( \sin {{360}^{o}}-{{30}^{o}} \right)....\left( ii \right)\]
We know that, \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \]. So, by substituting \[n=1,\pi = {{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\sin \left( {{360}^{o}}-{{30}^{o}} \right)=-\sin {{30}^{o}}\]
Also, we know that \[\cos \left( 2n\pi -\theta \right)=\cos \theta \]. So, by substituting
\[n=2,\pi ={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\cos \left( {{720}^{o}}-{{60}^{o}} \right)=\cos {{60}^{o}}\]
By substituting the values of \[\cos \left( {{660}^{o}} \right)\] and \[\sin \left( {{330}^{o}} \right)\] in equation (ii), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\cos \left( {{60}^{o}} \right)\left( -\sin {{30}^{o}} \right)\]
\[LHS=-\left[ \sin {{60}^{o}}\cos {{30}^{o}}+\cos {{60}^{o}}\sin {{30}^{o}} \right].....\left( iii \right)\]
Now, let us find the values of \[\sin {{60}^{o}},\sin {{30}^{o}},\cos {{30}^{o}}\] and \[\cos {{60}^{o}}\] from the trigonometric table for general angles.
From the above table, we get
\[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\]
\[\cos {{60}^{o}}=\dfrac{1}{2}\]
\[\sin {{30}^{o}}=\dfrac{1}{2}\]
\[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\]
By substituting these values in equation (iii), we get,
\[LHS=-\left[ \dfrac{\sqrt{3}}{2}.\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right]\]
\[LHS=-\left[ \dfrac{3}{4}+\dfrac{1}{4} \right]\]
\[LHS=-\dfrac{4}{4}\]
\[LHS=-1=RHS\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Note: Students are advised to remember the general formulas like \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \], etc. Also, students should always convert the higher angles into their principal values that is between 0 to \[2\pi \] and then between 0 to \[\dfrac{\pi }{2}\] to easily solve the question because we only know the values of the trigonometric ratios at these angles.
Complete step-by-step answer:
In this question, we have to prove that \[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos
\left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]. Let us consider the LHS of the equation given in the question.
\[LHS=\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin
{{330}^{o}}\]
We know that, \[\sin \left( -\theta \right)=-\sin \theta \text{ and }\cos \left( -\theta
\right)=\cos \theta \]. By using these in the above equation, we get,
\[LHS=-\sin \left( {{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( {{660}^{o}} \right)\sin
{{330}^{o}}\]
\[LHS=-\sin \left( {{360}^{o}}+{{60}^{o}} \right)\cos \left( {{360}^{o}}+{{30}^{o}} \right)+\cos
\left( {{720}^{o}}-{{60}^{o}} \right)\sin \left( {{360}^{o}}-{{30}^{o}} \right).....\left( i \right)\]
We know that \[\sin \left( 2n\pi +\theta \right)=\sin \theta \]. So, by substituting \[n=1,\pi
={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\sin \left( {{360}^{o}}+{{60}^{o}} \right)=\sin {{60}^{o}}\]
Also, we know that \[\cos \left( 2n\pi +\theta \right)=\cos \theta \]. So, by substituting
\[n=1,\pi ={{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\cos \left( {{360}^{o}}+{{30}^{o}} \right)=\cos {{30}^{o}}\]
By substituting the values of \[\cos \left( {{390}^{o}} \right)\] and \[\sin \left( {{420}^{o}} \right)\] in equation (i), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\left( \cos{{720}^{o}}-{{60}^{o}} \right)\left( \sin {{360}^{o}}-{{30}^{o}} \right)....\left( ii \right)\]
We know that, \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \]. So, by substituting \[n=1,\pi = {{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\sin \left( {{360}^{o}}-{{30}^{o}} \right)=-\sin {{30}^{o}}\]
Also, we know that \[\cos \left( 2n\pi -\theta \right)=\cos \theta \]. So, by substituting
\[n=2,\pi ={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\cos \left( {{720}^{o}}-{{60}^{o}} \right)=\cos {{60}^{o}}\]
By substituting the values of \[\cos \left( {{660}^{o}} \right)\] and \[\sin \left( {{330}^{o}} \right)\] in equation (ii), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\cos \left( {{60}^{o}} \right)\left( -\sin {{30}^{o}} \right)\]
\[LHS=-\left[ \sin {{60}^{o}}\cos {{30}^{o}}+\cos {{60}^{o}}\sin {{30}^{o}} \right].....\left( iii \right)\]
Now, let us find the values of \[\sin {{60}^{o}},\sin {{30}^{o}},\cos {{30}^{o}}\] and \[\cos {{60}^{o}}\] from the trigonometric table for general angles.
| \[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
| 0 | 0 | 1 | 0 | - | 1 | - |
| \[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
| \[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
| \[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
| \[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we get
\[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\]
\[\cos {{60}^{o}}=\dfrac{1}{2}\]
\[\sin {{30}^{o}}=\dfrac{1}{2}\]
\[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\]
By substituting these values in equation (iii), we get,
\[LHS=-\left[ \dfrac{\sqrt{3}}{2}.\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right]\]
\[LHS=-\left[ \dfrac{3}{4}+\dfrac{1}{4} \right]\]
\[LHS=-\dfrac{4}{4}\]
\[LHS=-1=RHS\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Note: Students are advised to remember the general formulas like \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \], etc. Also, students should always convert the higher angles into their principal values that is between 0 to \[2\pi \] and then between 0 to \[\dfrac{\pi }{2}\] to easily solve the question because we only know the values of the trigonometric ratios at these angles.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

