
Prove the following:
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Answer
609k+ views
Hint: First of all, take the LHS of the given equation. Now use \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \] and \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \] and then take the required value of n and \[\theta \] to reduce the given expression. Now get the values of \[\sin {{30}^{o}},\sin {{60}^{o}},etc.\] from the trigonometric table to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that \[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos
\left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]. Let us consider the LHS of the equation given in the question.
\[LHS=\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin
{{330}^{o}}\]
We know that, \[\sin \left( -\theta \right)=-\sin \theta \text{ and }\cos \left( -\theta
\right)=\cos \theta \]. By using these in the above equation, we get,
\[LHS=-\sin \left( {{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( {{660}^{o}} \right)\sin
{{330}^{o}}\]
\[LHS=-\sin \left( {{360}^{o}}+{{60}^{o}} \right)\cos \left( {{360}^{o}}+{{30}^{o}} \right)+\cos
\left( {{720}^{o}}-{{60}^{o}} \right)\sin \left( {{360}^{o}}-{{30}^{o}} \right).....\left( i \right)\]
We know that \[\sin \left( 2n\pi +\theta \right)=\sin \theta \]. So, by substituting \[n=1,\pi
={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\sin \left( {{360}^{o}}+{{60}^{o}} \right)=\sin {{60}^{o}}\]
Also, we know that \[\cos \left( 2n\pi +\theta \right)=\cos \theta \]. So, by substituting
\[n=1,\pi ={{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\cos \left( {{360}^{o}}+{{30}^{o}} \right)=\cos {{30}^{o}}\]
By substituting the values of \[\cos \left( {{390}^{o}} \right)\] and \[\sin \left( {{420}^{o}} \right)\] in equation (i), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\left( \cos{{720}^{o}}-{{60}^{o}} \right)\left( \sin {{360}^{o}}-{{30}^{o}} \right)....\left( ii \right)\]
We know that, \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \]. So, by substituting \[n=1,\pi = {{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\sin \left( {{360}^{o}}-{{30}^{o}} \right)=-\sin {{30}^{o}}\]
Also, we know that \[\cos \left( 2n\pi -\theta \right)=\cos \theta \]. So, by substituting
\[n=2,\pi ={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\cos \left( {{720}^{o}}-{{60}^{o}} \right)=\cos {{60}^{o}}\]
By substituting the values of \[\cos \left( {{660}^{o}} \right)\] and \[\sin \left( {{330}^{o}} \right)\] in equation (ii), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\cos \left( {{60}^{o}} \right)\left( -\sin {{30}^{o}} \right)\]
\[LHS=-\left[ \sin {{60}^{o}}\cos {{30}^{o}}+\cos {{60}^{o}}\sin {{30}^{o}} \right].....\left( iii \right)\]
Now, let us find the values of \[\sin {{60}^{o}},\sin {{30}^{o}},\cos {{30}^{o}}\] and \[\cos {{60}^{o}}\] from the trigonometric table for general angles.
From the above table, we get
\[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\]
\[\cos {{60}^{o}}=\dfrac{1}{2}\]
\[\sin {{30}^{o}}=\dfrac{1}{2}\]
\[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\]
By substituting these values in equation (iii), we get,
\[LHS=-\left[ \dfrac{\sqrt{3}}{2}.\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right]\]
\[LHS=-\left[ \dfrac{3}{4}+\dfrac{1}{4} \right]\]
\[LHS=-\dfrac{4}{4}\]
\[LHS=-1=RHS\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Note: Students are advised to remember the general formulas like \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \], etc. Also, students should always convert the higher angles into their principal values that is between 0 to \[2\pi \] and then between 0 to \[\dfrac{\pi }{2}\] to easily solve the question because we only know the values of the trigonometric ratios at these angles.
Complete step-by-step answer:
In this question, we have to prove that \[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos
\left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]. Let us consider the LHS of the equation given in the question.
\[LHS=\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin
{{330}^{o}}\]
We know that, \[\sin \left( -\theta \right)=-\sin \theta \text{ and }\cos \left( -\theta
\right)=\cos \theta \]. By using these in the above equation, we get,
\[LHS=-\sin \left( {{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( {{660}^{o}} \right)\sin
{{330}^{o}}\]
\[LHS=-\sin \left( {{360}^{o}}+{{60}^{o}} \right)\cos \left( {{360}^{o}}+{{30}^{o}} \right)+\cos
\left( {{720}^{o}}-{{60}^{o}} \right)\sin \left( {{360}^{o}}-{{30}^{o}} \right).....\left( i \right)\]
We know that \[\sin \left( 2n\pi +\theta \right)=\sin \theta \]. So, by substituting \[n=1,\pi
={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\sin \left( {{360}^{o}}+{{60}^{o}} \right)=\sin {{60}^{o}}\]
Also, we know that \[\cos \left( 2n\pi +\theta \right)=\cos \theta \]. So, by substituting
\[n=1,\pi ={{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\cos \left( {{360}^{o}}+{{30}^{o}} \right)=\cos {{30}^{o}}\]
By substituting the values of \[\cos \left( {{390}^{o}} \right)\] and \[\sin \left( {{420}^{o}} \right)\] in equation (i), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\left( \cos{{720}^{o}}-{{60}^{o}} \right)\left( \sin {{360}^{o}}-{{30}^{o}} \right)....\left( ii \right)\]
We know that, \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \]. So, by substituting \[n=1,\pi = {{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\sin \left( {{360}^{o}}-{{30}^{o}} \right)=-\sin {{30}^{o}}\]
Also, we know that \[\cos \left( 2n\pi -\theta \right)=\cos \theta \]. So, by substituting
\[n=2,\pi ={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\cos \left( {{720}^{o}}-{{60}^{o}} \right)=\cos {{60}^{o}}\]
By substituting the values of \[\cos \left( {{660}^{o}} \right)\] and \[\sin \left( {{330}^{o}} \right)\] in equation (ii), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\cos \left( {{60}^{o}} \right)\left( -\sin {{30}^{o}} \right)\]
\[LHS=-\left[ \sin {{60}^{o}}\cos {{30}^{o}}+\cos {{60}^{o}}\sin {{30}^{o}} \right].....\left( iii \right)\]
Now, let us find the values of \[\sin {{60}^{o}},\sin {{30}^{o}},\cos {{30}^{o}}\] and \[\cos {{60}^{o}}\] from the trigonometric table for general angles.
| \[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
| 0 | 0 | 1 | 0 | - | 1 | - |
| \[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
| \[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
| \[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
| \[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we get
\[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\]
\[\cos {{60}^{o}}=\dfrac{1}{2}\]
\[\sin {{30}^{o}}=\dfrac{1}{2}\]
\[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\]
By substituting these values in equation (iii), we get,
\[LHS=-\left[ \dfrac{\sqrt{3}}{2}.\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right]\]
\[LHS=-\left[ \dfrac{3}{4}+\dfrac{1}{4} \right]\]
\[LHS=-\dfrac{4}{4}\]
\[LHS=-1=RHS\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Note: Students are advised to remember the general formulas like \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \], etc. Also, students should always convert the higher angles into their principal values that is between 0 to \[2\pi \] and then between 0 to \[\dfrac{\pi }{2}\] to easily solve the question because we only know the values of the trigonometric ratios at these angles.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

