
Prove the following:
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Answer
511.8k+ views
Hint: First of all, take the LHS of the given equation. Now use \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \] and \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \] and then take the required value of n and \[\theta \] to reduce the given expression. Now get the values of \[\sin {{30}^{o}},\sin {{60}^{o}},etc.\] from the trigonometric table to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that \[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos
\left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]. Let us consider the LHS of the equation given in the question.
\[LHS=\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin
{{330}^{o}}\]
We know that, \[\sin \left( -\theta \right)=-\sin \theta \text{ and }\cos \left( -\theta
\right)=\cos \theta \]. By using these in the above equation, we get,
\[LHS=-\sin \left( {{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( {{660}^{o}} \right)\sin
{{330}^{o}}\]
\[LHS=-\sin \left( {{360}^{o}}+{{60}^{o}} \right)\cos \left( {{360}^{o}}+{{30}^{o}} \right)+\cos
\left( {{720}^{o}}-{{60}^{o}} \right)\sin \left( {{360}^{o}}-{{30}^{o}} \right).....\left( i \right)\]
We know that \[\sin \left( 2n\pi +\theta \right)=\sin \theta \]. So, by substituting \[n=1,\pi
={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\sin \left( {{360}^{o}}+{{60}^{o}} \right)=\sin {{60}^{o}}\]
Also, we know that \[\cos \left( 2n\pi +\theta \right)=\cos \theta \]. So, by substituting
\[n=1,\pi ={{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\cos \left( {{360}^{o}}+{{30}^{o}} \right)=\cos {{30}^{o}}\]
By substituting the values of \[\cos \left( {{390}^{o}} \right)\] and \[\sin \left( {{420}^{o}} \right)\] in equation (i), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\left( \cos{{720}^{o}}-{{60}^{o}} \right)\left( \sin {{360}^{o}}-{{30}^{o}} \right)....\left( ii \right)\]
We know that, \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \]. So, by substituting \[n=1,\pi = {{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\sin \left( {{360}^{o}}-{{30}^{o}} \right)=-\sin {{30}^{o}}\]
Also, we know that \[\cos \left( 2n\pi -\theta \right)=\cos \theta \]. So, by substituting
\[n=2,\pi ={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\cos \left( {{720}^{o}}-{{60}^{o}} \right)=\cos {{60}^{o}}\]
By substituting the values of \[\cos \left( {{660}^{o}} \right)\] and \[\sin \left( {{330}^{o}} \right)\] in equation (ii), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\cos \left( {{60}^{o}} \right)\left( -\sin {{30}^{o}} \right)\]
\[LHS=-\left[ \sin {{60}^{o}}\cos {{30}^{o}}+\cos {{60}^{o}}\sin {{30}^{o}} \right].....\left( iii \right)\]
Now, let us find the values of \[\sin {{60}^{o}},\sin {{30}^{o}},\cos {{30}^{o}}\] and \[\cos {{60}^{o}}\] from the trigonometric table for general angles.
From the above table, we get
\[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\]
\[\cos {{60}^{o}}=\dfrac{1}{2}\]
\[\sin {{30}^{o}}=\dfrac{1}{2}\]
\[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\]
By substituting these values in equation (iii), we get,
\[LHS=-\left[ \dfrac{\sqrt{3}}{2}.\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right]\]
\[LHS=-\left[ \dfrac{3}{4}+\dfrac{1}{4} \right]\]
\[LHS=-\dfrac{4}{4}\]
\[LHS=-1=RHS\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Note: Students are advised to remember the general formulas like \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \], etc. Also, students should always convert the higher angles into their principal values that is between 0 to \[2\pi \] and then between 0 to \[\dfrac{\pi }{2}\] to easily solve the question because we only know the values of the trigonometric ratios at these angles.
Complete step-by-step answer:
In this question, we have to prove that \[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos
\left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]. Let us consider the LHS of the equation given in the question.
\[LHS=\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin
{{330}^{o}}\]
We know that, \[\sin \left( -\theta \right)=-\sin \theta \text{ and }\cos \left( -\theta
\right)=\cos \theta \]. By using these in the above equation, we get,
\[LHS=-\sin \left( {{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( {{660}^{o}} \right)\sin
{{330}^{o}}\]
\[LHS=-\sin \left( {{360}^{o}}+{{60}^{o}} \right)\cos \left( {{360}^{o}}+{{30}^{o}} \right)+\cos
\left( {{720}^{o}}-{{60}^{o}} \right)\sin \left( {{360}^{o}}-{{30}^{o}} \right).....\left( i \right)\]
We know that \[\sin \left( 2n\pi +\theta \right)=\sin \theta \]. So, by substituting \[n=1,\pi
={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\sin \left( {{360}^{o}}+{{60}^{o}} \right)=\sin {{60}^{o}}\]
Also, we know that \[\cos \left( 2n\pi +\theta \right)=\cos \theta \]. So, by substituting
\[n=1,\pi ={{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\cos \left( {{360}^{o}}+{{30}^{o}} \right)=\cos {{30}^{o}}\]
By substituting the values of \[\cos \left( {{390}^{o}} \right)\] and \[\sin \left( {{420}^{o}} \right)\] in equation (i), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\left( \cos{{720}^{o}}-{{60}^{o}} \right)\left( \sin {{360}^{o}}-{{30}^{o}} \right)....\left( ii \right)\]
We know that, \[\sin \left( 2n\pi -\theta \right)=-\sin \theta \]. So, by substituting \[n=1,\pi = {{180}^{o}}\] and \[\theta ={{30}^{o}}\], we get,
\[\sin \left( {{360}^{o}}-{{30}^{o}} \right)=-\sin {{30}^{o}}\]
Also, we know that \[\cos \left( 2n\pi -\theta \right)=\cos \theta \]. So, by substituting
\[n=2,\pi ={{180}^{o}}\] and \[\theta ={{60}^{o}}\], we get,
\[\cos \left( {{720}^{o}}-{{60}^{o}} \right)=\cos {{60}^{o}}\]
By substituting the values of \[\cos \left( {{660}^{o}} \right)\] and \[\sin \left( {{330}^{o}} \right)\] in equation (ii), we get,
\[LHS=\left( -\sin {{60}^{o}} \right)\left( \cos {{30}^{o}} \right)+\cos \left( {{60}^{o}} \right)\left( -\sin {{30}^{o}} \right)\]
\[LHS=-\left[ \sin {{60}^{o}}\cos {{30}^{o}}+\cos {{60}^{o}}\sin {{30}^{o}} \right].....\left( iii \right)\]
Now, let us find the values of \[\sin {{60}^{o}},\sin {{30}^{o}},\cos {{30}^{o}}\] and \[\cos {{60}^{o}}\] from the trigonometric table for general angles.
\[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
0 | 0 | 1 | 0 | - | 1 | - |
\[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
\[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
\[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
\[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we get
\[\sin {{60}^{o}}=\dfrac{\sqrt{3}}{2}\]
\[\cos {{60}^{o}}=\dfrac{1}{2}\]
\[\sin {{30}^{o}}=\dfrac{1}{2}\]
\[\cos {{30}^{o}}=\dfrac{\sqrt{3}}{2}\]
By substituting these values in equation (iii), we get,
\[LHS=-\left[ \dfrac{\sqrt{3}}{2}.\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{1}{2} \right]\]
\[LHS=-\left[ \dfrac{3}{4}+\dfrac{1}{4} \right]\]
\[LHS=-\dfrac{4}{4}\]
\[LHS=-1=RHS\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\sin \left( -{{420}^{o}} \right)\cos {{390}^{o}}+\cos \left( -{{660}^{o}} \right)\sin {{330}^{o}}=-1\]
Note: Students are advised to remember the general formulas like \[\sin \left( 2n\pi +\theta \right)=\sin \theta ,\cos \left( 2n\pi \pm \theta \right)=\cos \theta \], etc. Also, students should always convert the higher angles into their principal values that is between 0 to \[2\pi \] and then between 0 to \[\dfrac{\pi }{2}\] to easily solve the question because we only know the values of the trigonometric ratios at these angles.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
