
Prove the following results of trigonometric functions of allied angles: -
(1) $\sin \left( \pi -\theta \right)=\sin \theta $, $\cos \left( \pi -\theta \right)=-\cos \theta $, $\tan \left( \pi -\theta \right)=-\tan \theta $
(2) $\sin \left( 2\pi -\theta \right)=-\sin \theta $, $\cos \left( 2\pi -\theta \right)=\cos \theta $, $\tan \left( 2\pi -\theta \right)=-\tan \theta $
(3) $\sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta $, $\cos \left( \dfrac{3\pi }{2}-\theta \right)=-\sin \theta $, $\tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta $
Answer
503.1k+ views
Hint: To prove the results for the sine function, use the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substitute the values of the angles to evaluate. For the results of the cosine function, use the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and evaluate by substituting proper values of angles. Finally, for the tangent function use the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ to evaluate the relation. Use the values: - $\sin \pi =0$, $\cos \pi =-1$, $\tan \pi =0$, $\sin 2\pi =0$, $\cos 2\pi =1$, $\tan 2\pi =0$, $\sin \dfrac{3\pi }{2}=-1$, $\cos \dfrac{3\pi }{2}=0$ and $\tan \dfrac{3\pi }{2}=\infty $.
Complete step by step answer:
Here we have been asked to prove certain results of trigonometric functions of allied angles. Let us check them one by one.
(1) Here we need to prove the following three results: - $\sin \left( \pi -\theta \right)=\sin \theta $, $\cos \left( \pi -\theta \right)=-\cos \theta $, $\tan \left( \pi -\theta \right)=-\tan \theta $.
(i) Considering the relation $\sin \left( \pi -\theta \right)$, so using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substituting the angles a = $\pi $ and b = $\theta $ we get,
$\Rightarrow \sin \left( \pi -\theta \right)=\sin \pi \cos \theta -\cos \pi \sin \theta $
Substituting the values $\sin \pi =0$and $\cos \pi =-1$ we get,
$\begin{align}
& \Rightarrow \sin \left( \pi -\theta \right)=0\times \cos \theta -\left( -1 \right)\times \sin \theta \\
& \therefore \sin \left( \pi -\theta \right)=\sin \theta \\
\end{align}$
(ii) Considering the relation $\cos \left( \pi -\theta \right)$, so using the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and substituting the angles a = $\pi $ and b = $\theta $ we get,
\[\begin{align}
& \Rightarrow \cos \left( \pi -\theta \right)=\cos \pi \cos \theta +\sin \pi \sin \theta \\
& \Rightarrow \cos \left( \pi -\theta \right)=\left( -1 \right)\times \cos \theta +0\times \sin \theta \\
& \therefore \cos \left( \pi -\theta \right)=-\cos \theta \\
\end{align}\]
(iii) Considering the relation$\tan \left( \pi -\theta \right)$, so using the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ and substituting the angles a = $\pi $ and b = $\theta $ we get,
\[\Rightarrow \tan \left( \pi -\theta \right)=\dfrac{\tan \pi -\tan \theta }{1+\tan \pi \tan \theta }\]
Substituting the value $\tan \pi =0$ we get,
\[\begin{align}
& \Rightarrow \tan \left( \pi -\theta \right)=\dfrac{0-\tan \theta }{1+0\times \tan \theta } \\
& \therefore \tan \left( \pi -\theta \right)=-\tan \theta \\
\end{align}\]
(2) Here we need to prove the following three results: - $\sin \left( 2\pi -\theta \right)=-\sin \theta $, $\cos \left( 2\pi -\theta \right)=\cos \theta $, $\tan \left( 2\pi -\theta \right)=-\tan \theta $.
(i) Considering the relation $\sin \left( 2\pi -\theta \right)$, so using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substituting the angles a = $2\pi $ and b = $\theta $ we get,
$\Rightarrow \sin \left( 2\pi -\theta \right)=\sin 2\pi \cos \theta -\cos 2\pi \sin \theta $
Substituting the values $\sin 2\pi =0$ and $\cos 2\pi =1$ we get,
$\begin{align}
& \Rightarrow \sin \left( 2\pi -\theta \right)=0\times \cos \theta -1\times \sin \theta \\
& \therefore \sin \left( 2\pi -\theta \right)=-\sin \theta \\
\end{align}$
(ii) Considering the relation $\cos \left( 2\pi -\theta \right)$, so using the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and substituting the angles a = $2\pi $ and b = $\theta $ we get,
\[\begin{align}
& \Rightarrow \cos \left( 2\pi -\theta \right)=\cos 2\pi \cos \theta +\sin 2\pi \sin \theta \\
& \Rightarrow \cos \left( 2\pi -\theta \right)=1\times \cos \theta +0\times \sin \theta \\
& \therefore \cos \left( 2\pi -\theta \right)=\cos \theta \\
\end{align}\]
(iii) Considering the relation $\tan \left( 2\pi -\theta \right)$, so using the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ and substituting the angles a = $2\pi $ and b = $\theta $ we get,
\[\Rightarrow \tan \left( 2\pi -\theta \right)=\dfrac{\tan 2\pi -\tan \theta }{1+\tan 2\pi \tan \theta }\]
Substituting the value $\tan 2\pi =0$ we get,
\[\begin{align}
& \Rightarrow \tan \left( 2\pi -\theta \right)=\dfrac{0-\tan \theta }{1+0\times \tan \theta } \\
& \therefore \tan \left( 2\pi -\theta \right)=-\tan \theta \\
\end{align}\]
(3) Here we need to prove the following three results: - $\sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta $, $\cos \left( \dfrac{3\pi }{2}-\theta \right)=-\sin \theta $, $\tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta $.
(i) Considering the relation $\sin \left( \dfrac{3\pi }{2}-\theta \right)$, so using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substituting the angles a = $\dfrac{3\pi }{2}$ and b = $\theta $ we get,
$\Rightarrow \sin \left( \dfrac{3\pi }{2}-\theta \right)=\sin \dfrac{3\pi }{2}\cos \theta -\cos \dfrac{3\pi }{2}\sin \theta $
Substituting the values $\sin \dfrac{3\pi }{2}=-1$and $\cos \dfrac{3\pi }{2}=0$ we get,
$\begin{align}
& \Rightarrow \sin \left( \dfrac{3\pi }{2}-\theta \right)=\left( -1 \right)\times \cos \theta -0\times \sin \theta \\
& \therefore \sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta \\
\end{align}$
(ii) Considering the relation $\cos \left( \dfrac{3\pi }{2}-\theta \right)$, so using the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and substituting the angles a = $\dfrac{3\pi }{2}$ and b = $\theta $ we get,
\[\begin{align}
& \Rightarrow \cos \left( \dfrac{3\pi }{2}-\theta \right)=\cos \dfrac{3\pi }{2}\cos \theta +\sin \dfrac{3\pi }{2}\sin \theta \\
& \Rightarrow \cos \left( \dfrac{3\pi }{2}-\theta \right)=0\times \cos \theta +\left( -1 \right)\times \sin \theta \\
& \therefore \cos \left( \dfrac{3\pi }{2}-\theta \right)=-\sin \theta \\
\end{align}\]
(iii) Considering the relation \[\tan \left( \dfrac{3\pi }{2}-\theta \right)\], so using the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ and substituting the angles a = $\dfrac{3\pi }{2}$ and b = $\theta $ we get,
\[\Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{\tan \dfrac{3\pi }{2}-\tan \theta }{1+\tan \dfrac{3\pi }{2}\tan \theta }\]
We know that $\tan \dfrac{3\pi }{2}=\infty $ so we cannot substitute this value directly in the above relation because if we will do so then the expression will become indeterminate form. So dividing the numerator and the denominator with $\tan \dfrac{3\pi }{2}$ and using the fact that any non – zero number divided by infinity is 0, we get,
\[\begin{align}
& \Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{1-\left( \dfrac{\tan \theta }{\tan \dfrac{3\pi }{2}} \right)}{\left( \dfrac{1}{\tan \dfrac{3\pi }{2}} \right)+\tan \theta } \\
& \Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{1-\left( \dfrac{\tan \theta }{\infty } \right)}{\left( \dfrac{1}{\infty } \right)+\tan \theta } \\
& \Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{1}{\tan \theta } \\
\end{align}\]
Using the conversion $\dfrac{1}{\tan \theta }=\cot \theta $ we get,
\[\therefore \tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta \]
Note: Note that you must remember all the above obtained results because they are used as identities and formulas in further topics and chapters of mathematics and therefore they will not be proved everywhere but directly used. Remember the trigonometric identities: - $\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b$, $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$ and $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ in case you have to find the values of trigonometric functions of angles like $\left( \pi +\theta \right)$.
Complete step by step answer:
Here we have been asked to prove certain results of trigonometric functions of allied angles. Let us check them one by one.
(1) Here we need to prove the following three results: - $\sin \left( \pi -\theta \right)=\sin \theta $, $\cos \left( \pi -\theta \right)=-\cos \theta $, $\tan \left( \pi -\theta \right)=-\tan \theta $.
(i) Considering the relation $\sin \left( \pi -\theta \right)$, so using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substituting the angles a = $\pi $ and b = $\theta $ we get,
$\Rightarrow \sin \left( \pi -\theta \right)=\sin \pi \cos \theta -\cos \pi \sin \theta $
Substituting the values $\sin \pi =0$and $\cos \pi =-1$ we get,
$\begin{align}
& \Rightarrow \sin \left( \pi -\theta \right)=0\times \cos \theta -\left( -1 \right)\times \sin \theta \\
& \therefore \sin \left( \pi -\theta \right)=\sin \theta \\
\end{align}$
(ii) Considering the relation $\cos \left( \pi -\theta \right)$, so using the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and substituting the angles a = $\pi $ and b = $\theta $ we get,
\[\begin{align}
& \Rightarrow \cos \left( \pi -\theta \right)=\cos \pi \cos \theta +\sin \pi \sin \theta \\
& \Rightarrow \cos \left( \pi -\theta \right)=\left( -1 \right)\times \cos \theta +0\times \sin \theta \\
& \therefore \cos \left( \pi -\theta \right)=-\cos \theta \\
\end{align}\]
(iii) Considering the relation$\tan \left( \pi -\theta \right)$, so using the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ and substituting the angles a = $\pi $ and b = $\theta $ we get,
\[\Rightarrow \tan \left( \pi -\theta \right)=\dfrac{\tan \pi -\tan \theta }{1+\tan \pi \tan \theta }\]
Substituting the value $\tan \pi =0$ we get,
\[\begin{align}
& \Rightarrow \tan \left( \pi -\theta \right)=\dfrac{0-\tan \theta }{1+0\times \tan \theta } \\
& \therefore \tan \left( \pi -\theta \right)=-\tan \theta \\
\end{align}\]
(2) Here we need to prove the following three results: - $\sin \left( 2\pi -\theta \right)=-\sin \theta $, $\cos \left( 2\pi -\theta \right)=\cos \theta $, $\tan \left( 2\pi -\theta \right)=-\tan \theta $.
(i) Considering the relation $\sin \left( 2\pi -\theta \right)$, so using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substituting the angles a = $2\pi $ and b = $\theta $ we get,
$\Rightarrow \sin \left( 2\pi -\theta \right)=\sin 2\pi \cos \theta -\cos 2\pi \sin \theta $
Substituting the values $\sin 2\pi =0$ and $\cos 2\pi =1$ we get,
$\begin{align}
& \Rightarrow \sin \left( 2\pi -\theta \right)=0\times \cos \theta -1\times \sin \theta \\
& \therefore \sin \left( 2\pi -\theta \right)=-\sin \theta \\
\end{align}$
(ii) Considering the relation $\cos \left( 2\pi -\theta \right)$, so using the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and substituting the angles a = $2\pi $ and b = $\theta $ we get,
\[\begin{align}
& \Rightarrow \cos \left( 2\pi -\theta \right)=\cos 2\pi \cos \theta +\sin 2\pi \sin \theta \\
& \Rightarrow \cos \left( 2\pi -\theta \right)=1\times \cos \theta +0\times \sin \theta \\
& \therefore \cos \left( 2\pi -\theta \right)=\cos \theta \\
\end{align}\]
(iii) Considering the relation $\tan \left( 2\pi -\theta \right)$, so using the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ and substituting the angles a = $2\pi $ and b = $\theta $ we get,
\[\Rightarrow \tan \left( 2\pi -\theta \right)=\dfrac{\tan 2\pi -\tan \theta }{1+\tan 2\pi \tan \theta }\]
Substituting the value $\tan 2\pi =0$ we get,
\[\begin{align}
& \Rightarrow \tan \left( 2\pi -\theta \right)=\dfrac{0-\tan \theta }{1+0\times \tan \theta } \\
& \therefore \tan \left( 2\pi -\theta \right)=-\tan \theta \\
\end{align}\]
(3) Here we need to prove the following three results: - $\sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta $, $\cos \left( \dfrac{3\pi }{2}-\theta \right)=-\sin \theta $, $\tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta $.
(i) Considering the relation $\sin \left( \dfrac{3\pi }{2}-\theta \right)$, so using the formula $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$ and substituting the angles a = $\dfrac{3\pi }{2}$ and b = $\theta $ we get,
$\Rightarrow \sin \left( \dfrac{3\pi }{2}-\theta \right)=\sin \dfrac{3\pi }{2}\cos \theta -\cos \dfrac{3\pi }{2}\sin \theta $
Substituting the values $\sin \dfrac{3\pi }{2}=-1$and $\cos \dfrac{3\pi }{2}=0$ we get,
$\begin{align}
& \Rightarrow \sin \left( \dfrac{3\pi }{2}-\theta \right)=\left( -1 \right)\times \cos \theta -0\times \sin \theta \\
& \therefore \sin \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \theta \\
\end{align}$
(ii) Considering the relation $\cos \left( \dfrac{3\pi }{2}-\theta \right)$, so using the formula $\cos \left( a-b \right)=\cos a\cos b+\sin a\sin b$ and substituting the angles a = $\dfrac{3\pi }{2}$ and b = $\theta $ we get,
\[\begin{align}
& \Rightarrow \cos \left( \dfrac{3\pi }{2}-\theta \right)=\cos \dfrac{3\pi }{2}\cos \theta +\sin \dfrac{3\pi }{2}\sin \theta \\
& \Rightarrow \cos \left( \dfrac{3\pi }{2}-\theta \right)=0\times \cos \theta +\left( -1 \right)\times \sin \theta \\
& \therefore \cos \left( \dfrac{3\pi }{2}-\theta \right)=-\sin \theta \\
\end{align}\]
(iii) Considering the relation \[\tan \left( \dfrac{3\pi }{2}-\theta \right)\], so using the formula $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}$ and substituting the angles a = $\dfrac{3\pi }{2}$ and b = $\theta $ we get,
\[\Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{\tan \dfrac{3\pi }{2}-\tan \theta }{1+\tan \dfrac{3\pi }{2}\tan \theta }\]
We know that $\tan \dfrac{3\pi }{2}=\infty $ so we cannot substitute this value directly in the above relation because if we will do so then the expression will become indeterminate form. So dividing the numerator and the denominator with $\tan \dfrac{3\pi }{2}$ and using the fact that any non – zero number divided by infinity is 0, we get,
\[\begin{align}
& \Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{1-\left( \dfrac{\tan \theta }{\tan \dfrac{3\pi }{2}} \right)}{\left( \dfrac{1}{\tan \dfrac{3\pi }{2}} \right)+\tan \theta } \\
& \Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{1-\left( \dfrac{\tan \theta }{\infty } \right)}{\left( \dfrac{1}{\infty } \right)+\tan \theta } \\
& \Rightarrow \tan \left( \dfrac{3\pi }{2}-\theta \right)=\dfrac{1}{\tan \theta } \\
\end{align}\]
Using the conversion $\dfrac{1}{\tan \theta }=\cot \theta $ we get,
\[\therefore \tan \left( \dfrac{3\pi }{2}-\theta \right)=\cot \theta \]
Note: Note that you must remember all the above obtained results because they are used as identities and formulas in further topics and chapters of mathematics and therefore they will not be proved everywhere but directly used. Remember the trigonometric identities: - $\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b$, $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$ and $\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}$ in case you have to find the values of trigonometric functions of angles like $\left( \pi +\theta \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

