Answer
Verified
435.6k+ views
Hint:
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths