
Prove the following result of inverse trigonometric functions:
$ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Answer
564.9k+ views
Hint:
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

