
Prove the following result: $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\left( 3-2\sqrt{2} \right)$.
Answer
576k+ views
Hint: We start solving the problem by using the properties $\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta $ for the terms given in numerator and denominator. We then substitute the value of sine terms in numerator and denominator. We then multiply the numerator and denominator with the conjugate surd of the denominator to get the integer in the denominator. We then make the necessary calculations to prove the required result in the problem.
Complete step-by-step answer:
According to the problem, we need to prove the given result: $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\left( 3-2\sqrt{2} \right)$.
Let us first solve L.H.S (Left Hand Side) to prove that it is equal to R.H.S (Right Hand Side).
Now, we consider $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\cos \left( {{90}^{\circ }}+{{45}^{\circ }} \right)-\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)}{\cos \left( {{90}^{\circ }}+{{45}^{\circ }} \right)+\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)}$ ---(1).
We know that $\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta $. We use this result on equation (1).
So, we get $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sin \left( {{45}^{\circ }} \right)-\left( -\sin \left( {{30}^{\circ }} \right) \right)}{-\sin \left( {{45}^{\circ }} \right)+\left( -\sin \left( {{30}^{\circ }} \right) \right)}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sin \left( {{45}^{\circ }} \right)+\sin \left( {{30}^{\circ }} \right)}{-\sin \left( {{45}^{\circ }} \right)-\sin \left( {{30}^{\circ }} \right)}$ ---(2).
We know that $\sin \left( {{45}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}$ and $\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2}$. We use these results in equation (2).
So, we get $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}}{-\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\dfrac{-\sqrt{2}+1}{2}}{\dfrac{-\sqrt{2}-1}{2}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sqrt{2}+1}{-\sqrt{2}-1}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}$ ---(3).
Let us multiply numerator and denominator in equation (3) with $\sqrt{2}-1$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}$.
We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{{{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}}$.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}-2\left( \sqrt{2} \right)\left( 1 \right)}{2-1}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{2+1-2\sqrt{2}}{1}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=3-2\sqrt{2}$.
$\Rightarrow $ L.H.S = R.H.S.
So, we have proved $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=3-2\sqrt{2}$.
Note: We can also use the sum to product formulas $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$, but it will give the angles $127{{\dfrac{1}{2}}^{\circ }}$ and $17{{\dfrac{1}{2}}^{\circ }}$ which will be difficult to calculate. We can see that the problem contains a heavy amount of calculations, so we need to perform each step carefully. Whenever we get this type of problems, we try to convert the given angles in to the angles between ${{0}^{\circ }}$ and ${{90}^{\circ }}$ as we can use some of the standard values.
Complete step-by-step answer:
According to the problem, we need to prove the given result: $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\left( 3-2\sqrt{2} \right)$.
Let us first solve L.H.S (Left Hand Side) to prove that it is equal to R.H.S (Right Hand Side).
Now, we consider $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\cos \left( {{90}^{\circ }}+{{45}^{\circ }} \right)-\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)}{\cos \left( {{90}^{\circ }}+{{45}^{\circ }} \right)+\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)}$ ---(1).
We know that $\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta $. We use this result on equation (1).
So, we get $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sin \left( {{45}^{\circ }} \right)-\left( -\sin \left( {{30}^{\circ }} \right) \right)}{-\sin \left( {{45}^{\circ }} \right)+\left( -\sin \left( {{30}^{\circ }} \right) \right)}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sin \left( {{45}^{\circ }} \right)+\sin \left( {{30}^{\circ }} \right)}{-\sin \left( {{45}^{\circ }} \right)-\sin \left( {{30}^{\circ }} \right)}$ ---(2).
We know that $\sin \left( {{45}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}$ and $\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2}$. We use these results in equation (2).
So, we get $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}}{-\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\dfrac{-\sqrt{2}+1}{2}}{\dfrac{-\sqrt{2}-1}{2}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sqrt{2}+1}{-\sqrt{2}-1}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}$ ---(3).
Let us multiply numerator and denominator in equation (3) with $\sqrt{2}-1$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}$.
We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{{{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}}$.
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}-2\left( \sqrt{2} \right)\left( 1 \right)}{2-1}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{2+1-2\sqrt{2}}{1}$.
$\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=3-2\sqrt{2}$.
$\Rightarrow $ L.H.S = R.H.S.
So, we have proved $\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=3-2\sqrt{2}$.
Note: We can also use the sum to product formulas $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$, but it will give the angles $127{{\dfrac{1}{2}}^{\circ }}$ and $17{{\dfrac{1}{2}}^{\circ }}$ which will be difficult to calculate. We can see that the problem contains a heavy amount of calculations, so we need to perform each step carefully. Whenever we get this type of problems, we try to convert the given angles in to the angles between ${{0}^{\circ }}$ and ${{90}^{\circ }}$ as we can use some of the standard values.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

