
Prove the following ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}=\text{4RcosC}$ if r is the radius of in-circle and ${{\text{r}}_{\text{1}}}\text{,}{{\text{r}}_{\text{2}}}\text{,}{{\text{r}}_{\text{3}}}$ are the radius of ex-circles opposite to A, B, C of $\Delta ABC$ respectively.
Answer
551.7k+ views
Hint: At first, substitute $r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b}\text{ and }{{r}_{3}}=\dfrac{\Delta }{s-c}$ and hence simplify, then use the fact that $2s=a+b+c$. Then use the cosine rule which is \[{{a}^{2}}+{{b}^{2}}-{{c}^{2}}=2ab\cos C\] and substitute it to simplify and get the answer.
Complete step by step answer:
In the question, we are asked to prove that ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ is equal to 4RcosC.
If r is radius of in circle and ${{\text{r}}_{\text{1}}}\text{,}{{\text{r}}_{\text{2}}}\text{,}{{\text{r}}_{\text{3}}}$ are radius of ex-circles opposite to A, B, C of $\Delta ABC$ respectively then,
\[r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b}\text{ and }{{r}_{3}}=\dfrac{\Delta }{s-c}\]
Where, $\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}$ and s is $\dfrac{a+b+c}{2}$ and also called semi perimeter. Now, using these values we can write ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ as,
\[\dfrac{\Delta }{s-a}+\dfrac{\Delta }{s-b}-\dfrac{\Delta }{s-c}+\dfrac{\Delta }{s}\]
Which can be simplified as,
\[\begin{align}
& \Delta \left( \dfrac{1}{s-a}+\dfrac{1}{s-b} \right)+\Delta \left( \dfrac{1}{s}-\dfrac{1}{s-c} \right) \\
& \Rightarrow \Delta \left( \dfrac{2s-a-b}{\left( s-a \right)\left( s-b \right)} \right)+\Delta \left( \dfrac{s-c-s}{s\left( s-c \right)} \right) \\
& \Rightarrow \Delta \left( \dfrac{2s-a-b}{\left( s-a \right)\left( s-b \right)} \right)+\dfrac{\Delta \left( -c \right)}{s\left( s-c \right)} \\
\end{align}\]
Now, as we know $2s=a+b+c$ so we can take $2s-a-b$ as C. So,
\[\dfrac{\Delta c}{\left( s-a \right)\left( s-b \right)}-\dfrac{\Delta c}{s\left( s-c \right)}\]
Which can also be written as,
\[\begin{align}
& \Delta c\left( \dfrac{1}{\left( s-a \right)\left( s-b \right)}-\dfrac{1}{s\left( s-c \right)} \right) \\
& \Rightarrow \Delta c\left( \dfrac{s\left( s-c \right)-\left( s-a \right)\left( s-b \right)}{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} \right) \\
\end{align}\]
As we know $\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}$ so, we can write it as,
\[\begin{align}
& \dfrac{\Delta c}{{{\Delta }^{2}}}\left( {{s}^{2}}-sc-{{s}^{2}}-ab+s\left( a+b \right) \right) \\
& \Rightarrow \dfrac{c}{\Delta }\left( s\left( a+b+c \right)-ab \right) \\
\end{align}\]
We will substitute s as $\dfrac{a+b+c}{2}$ so we get:
\[\dfrac{c}{\Delta }\left( \dfrac{\left( a+b+c \right)\left( \dfrac{a+b-c}{2} \right)}{2}-ab \right)\]
Which on multiplying we get:
\[\begin{align}
& \dfrac{c}{\Delta }\left( \dfrac{{{a}^{2}}+2ab+{{b}^{2}}-{{c}^{2}}}{2}-ab \right) \\
& \Rightarrow \dfrac{c}{2\Delta }\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right) \\
\end{align}\]
Now using cosine rule we can say that,
\[{{a}^{2}}+{{b}^{2}}-{{c}^{2}}=2ab\cos C\]
So we get:
\[\begin{align}
& \dfrac{c}{2\Delta }\times 2ab\cos C \\
& \Rightarrow \left( \dfrac{abc}{\Delta } \right)\cos C \\
\end{align}\]
Here, we will use a formula which states that $\Delta =\dfrac{abc}{4R}\Rightarrow 4R=\dfrac{abc}{\Delta }$ so we can say that,
$\left( \dfrac{abc}{\Delta } \right)\cos C$ equals 4RcosC.
Hence, ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ equals to 4RcosC is proved.
Note: Students generally solving out or providing these kinds of problems tend to forget or make mistakes while writing formulas. So, they should be careful about it, otherwise the solution might get wrong.
Complete step by step answer:
In the question, we are asked to prove that ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ is equal to 4RcosC.
If r is radius of in circle and ${{\text{r}}_{\text{1}}}\text{,}{{\text{r}}_{\text{2}}}\text{,}{{\text{r}}_{\text{3}}}$ are radius of ex-circles opposite to A, B, C of $\Delta ABC$ respectively then,
\[r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b}\text{ and }{{r}_{3}}=\dfrac{\Delta }{s-c}\]
Where, $\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}$ and s is $\dfrac{a+b+c}{2}$ and also called semi perimeter. Now, using these values we can write ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ as,
\[\dfrac{\Delta }{s-a}+\dfrac{\Delta }{s-b}-\dfrac{\Delta }{s-c}+\dfrac{\Delta }{s}\]
Which can be simplified as,
\[\begin{align}
& \Delta \left( \dfrac{1}{s-a}+\dfrac{1}{s-b} \right)+\Delta \left( \dfrac{1}{s}-\dfrac{1}{s-c} \right) \\
& \Rightarrow \Delta \left( \dfrac{2s-a-b}{\left( s-a \right)\left( s-b \right)} \right)+\Delta \left( \dfrac{s-c-s}{s\left( s-c \right)} \right) \\
& \Rightarrow \Delta \left( \dfrac{2s-a-b}{\left( s-a \right)\left( s-b \right)} \right)+\dfrac{\Delta \left( -c \right)}{s\left( s-c \right)} \\
\end{align}\]
Now, as we know $2s=a+b+c$ so we can take $2s-a-b$ as C. So,
\[\dfrac{\Delta c}{\left( s-a \right)\left( s-b \right)}-\dfrac{\Delta c}{s\left( s-c \right)}\]
Which can also be written as,
\[\begin{align}
& \Delta c\left( \dfrac{1}{\left( s-a \right)\left( s-b \right)}-\dfrac{1}{s\left( s-c \right)} \right) \\
& \Rightarrow \Delta c\left( \dfrac{s\left( s-c \right)-\left( s-a \right)\left( s-b \right)}{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} \right) \\
\end{align}\]
As we know $\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}$ so, we can write it as,
\[\begin{align}
& \dfrac{\Delta c}{{{\Delta }^{2}}}\left( {{s}^{2}}-sc-{{s}^{2}}-ab+s\left( a+b \right) \right) \\
& \Rightarrow \dfrac{c}{\Delta }\left( s\left( a+b+c \right)-ab \right) \\
\end{align}\]
We will substitute s as $\dfrac{a+b+c}{2}$ so we get:
\[\dfrac{c}{\Delta }\left( \dfrac{\left( a+b+c \right)\left( \dfrac{a+b-c}{2} \right)}{2}-ab \right)\]
Which on multiplying we get:
\[\begin{align}
& \dfrac{c}{\Delta }\left( \dfrac{{{a}^{2}}+2ab+{{b}^{2}}-{{c}^{2}}}{2}-ab \right) \\
& \Rightarrow \dfrac{c}{2\Delta }\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right) \\
\end{align}\]
Now using cosine rule we can say that,
\[{{a}^{2}}+{{b}^{2}}-{{c}^{2}}=2ab\cos C\]
So we get:
\[\begin{align}
& \dfrac{c}{2\Delta }\times 2ab\cos C \\
& \Rightarrow \left( \dfrac{abc}{\Delta } \right)\cos C \\
\end{align}\]
Here, we will use a formula which states that $\Delta =\dfrac{abc}{4R}\Rightarrow 4R=\dfrac{abc}{\Delta }$ so we can say that,
$\left( \dfrac{abc}{\Delta } \right)\cos C$ equals 4RcosC.
Hence, ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ equals to 4RcosC is proved.
Note: Students generally solving out or providing these kinds of problems tend to forget or make mistakes while writing formulas. So, they should be careful about it, otherwise the solution might get wrong.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

