
Prove the following
\[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta \]
Answer
472.2k+ views
Hint: First of all, consider the LHS of the given equation. Now, use \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }.\] Now, multiply and divide by \[\tan \theta \] and use \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }.\] Then repeat these steps for each term and prove the given result.
Complete step-by-step solution:
In this question, we have to prove that \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta .\] Let us consider the LHS of the given equation.
\[LHS=\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\] so by using this, we get,
\[\Rightarrow LHS=\left( 1+\dfrac{1}{\cos 2\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
We know that \[\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }.\] So, by using this, we get,
\[\Rightarrow LHS=\left( 1+\dfrac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
By simplifying the above expression, we get,
\[\Rightarrow LHS=\left( \dfrac{2}{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
By multiplying and dividing \[\tan \theta \] in the above expression, we get,
\[\Rightarrow LHS=\dfrac{1}{\tan \theta }\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
We know that \[\dfrac{1}{\tan \theta }=\cot \theta \] and \[\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }=\tan 2\theta .\] By using these, we get,
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 2\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
Again by repeating the above steps for \[\sec 4\theta ,\] we get,
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 2\theta \right)\left( 1+\dfrac{1+{{\tan }^{2}}2\theta }{1-{{\tan }^{2}}2\theta } \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta } \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
As we have got \[\cot \theta .\tan 2\theta \] for \[\left( 1+\sec 2\theta \right)\] and \[\cot \theta .\tan 4\theta \] for \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right)\] and \[\cot \theta .\tan 8\theta \] for \[\left( 1+{{\sec }^{2}}\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).\] So, in the similar way, we get,
\[\Rightarrow LHS=\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
\[\Rightarrow LHS=\cot \theta .\tan \left( {{2}^{n}}\theta \right)=RHS\]
Hence, we have proved that \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta .\]
Note: First of all, students must take care of the angles while using the double angle or half-angle formulas. For example, sometimes students make this mistake of writing \[\cos 4\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\] while actually it is \[\cos 4\theta =\dfrac{1-{{\tan }^{2}}2\theta }{1+{{\tan }^{2}}2\theta }.\] So this must be taken care of. Also, it is advisable for students to memorize the formulas of \[\tan 2\theta ,\sin 2\theta ,\cos 2\theta \] in the terms of \[\sin \theta ,\cos \theta ,\tan \theta \] to easily solve these types of questions.
Complete step-by-step solution:
In this question, we have to prove that \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta .\] Let us consider the LHS of the given equation.
\[LHS=\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\] so by using this, we get,
\[\Rightarrow LHS=\left( 1+\dfrac{1}{\cos 2\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
We know that \[\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }.\] So, by using this, we get,
\[\Rightarrow LHS=\left( 1+\dfrac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
By simplifying the above expression, we get,
\[\Rightarrow LHS=\left( \dfrac{2}{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
By multiplying and dividing \[\tan \theta \] in the above expression, we get,
\[\Rightarrow LHS=\dfrac{1}{\tan \theta }\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
We know that \[\dfrac{1}{\tan \theta }=\cot \theta \] and \[\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }=\tan 2\theta .\] By using these, we get,
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 2\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
Again by repeating the above steps for \[\sec 4\theta ,\] we get,
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 2\theta \right)\left( 1+\dfrac{1+{{\tan }^{2}}2\theta }{1-{{\tan }^{2}}2\theta } \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta } \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
\[\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
As we have got \[\cot \theta .\tan 2\theta \] for \[\left( 1+\sec 2\theta \right)\] and \[\cot \theta .\tan 4\theta \] for \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right)\] and \[\cot \theta .\tan 8\theta \] for \[\left( 1+{{\sec }^{2}}\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).\] So, in the similar way, we get,
\[\Rightarrow LHS=\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)\]
\[\Rightarrow LHS=\cot \theta .\tan \left( {{2}^{n}}\theta \right)=RHS\]
Hence, we have proved that \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta .\]
Note: First of all, students must take care of the angles while using the double angle or half-angle formulas. For example, sometimes students make this mistake of writing \[\cos 4\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\] while actually it is \[\cos 4\theta =\dfrac{1-{{\tan }^{2}}2\theta }{1+{{\tan }^{2}}2\theta }.\] So this must be taken care of. Also, it is advisable for students to memorize the formulas of \[\tan 2\theta ,\sin 2\theta ,\cos 2\theta \] in the terms of \[\sin \theta ,\cos \theta ,\tan \theta \] to easily solve these types of questions.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
