
Prove the following identity: \[\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\] \[\]
Answer
537.9k+ views
Hint: We recall the definition of sine and cosine hyperbolic function as $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$ and $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$. We begin from right hand side of the given statement and simplify using the exponential identity ${{a}^{m+n}}={{a}^{m}}\cdot {{a}^{n}}$ to arrive at the left hand side. \[\]
Complete step-by-step solution:
We know that hyperbolic functions are functions analogous to ordinary trigonometric functions defined for the hyperbola, rather than the circle which is means just $\left( \cos t,\sin t \right)$ with parameter $t$ represents a circle with unit radius, the point $\left( \cosh t,\sinh t \right)$ represent form the right half of the equilateral parabola.
The basic hyperbolic functions are sine hyperbolic function $\left( \sinh x: R\to R \right)$ and cosine hyperbolic function $\left( \cosh x:R\to R \right)$. All the other hyperbolic functions are derived from hyperbolic sine and hyperbolic cosine. \[\]
The hyperbolic sine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]
The hyperbolic cosine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
We are asked to prove the following statement
\[\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We shall begin simplifying fro right hand side that is
\[2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We use the definition of sine hyperbolic function in terms of exponential for $x=\dfrac{A+B}{2}$ to have;
\[\sinh \left( \dfrac{A+B}{2} \right)=\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\]
We use the definition of cosine hyperbolic function in terms of exponential for $x=\dfrac{A-B}{2}$ to have;
\[\cosh \left( \dfrac{A-B}{2} \right)=\dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2}\]
We put the $\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)$ in the right hand side of the statement to have;
\[\begin{align}
& \Rightarrow 2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) \\
& \Rightarrow 2\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\times \dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2} \\
& \Rightarrow \dfrac{\left( {{e}^{\dfrac{A+B}{2}}}-{{e}^{{-}\dfrac{A+B}{2}}} \right)\left( {{e}^{\dfrac{A-B}{2}}}+e{^{{-}\dfrac{A-B}{2}}} \right)}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}+{{e}^{\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}}{2} \\
\end{align}\]
We use the exponential identity ${{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B+A-B}{2}}}+{{e}^{\dfrac{A+B-A+B}{2}}}-{{e}^{\dfrac{-A-B+A-B}{2}}}-{{e}^{\dfrac{-A-B-A+B}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{2A}{2}}}+{{e}^{\dfrac{2B}{2}}}-{{e}^{\dfrac{-2B}{2}}}-{{e}^{\dfrac{-2A}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}+{{e}^{B}}-{{e}^{-B}}-{{e}^{-A}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}-{{e}^{-A}}}{2}+\dfrac{{{e}^{B}}-{{e}^{-B}}}{2} \\
\end{align}\]
We use the definition of sine hyperbolic for $x=A,B$ in the above step to have
\[\Rightarrow \sinh A+\sinh B\]
The above result is on the left hand side of the statement. Hence it is proved.
Note: We note that a statement becomes identity when the statement is true for all parameters. The given statement is true for all $A,B$ and hence it is an identity. The trigonometric equivalent of the given identity is $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. We can alternatively prove using identities sum and difference of arguments of sine hyperbolic $\sinh \left( x+y \right)=\sinh x\cosh y+\cosh x\sinh y$ and $\sin \left( x-y \right)=\sinh x\cosh y-\cosh x\sinh y$.
Complete step-by-step solution:
We know that hyperbolic functions are functions analogous to ordinary trigonometric functions defined for the hyperbola, rather than the circle which is means just $\left( \cos t,\sin t \right)$ with parameter $t$ represents a circle with unit radius, the point $\left( \cosh t,\sinh t \right)$ represent form the right half of the equilateral parabola.
The basic hyperbolic functions are sine hyperbolic function $\left( \sinh x: R\to R \right)$ and cosine hyperbolic function $\left( \cosh x:R\to R \right)$. All the other hyperbolic functions are derived from hyperbolic sine and hyperbolic cosine. \[\]
The hyperbolic sine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]
The hyperbolic cosine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
We are asked to prove the following statement
\[\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We shall begin simplifying fro right hand side that is
\[2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We use the definition of sine hyperbolic function in terms of exponential for $x=\dfrac{A+B}{2}$ to have;
\[\sinh \left( \dfrac{A+B}{2} \right)=\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\]
We use the definition of cosine hyperbolic function in terms of exponential for $x=\dfrac{A-B}{2}$ to have;
\[\cosh \left( \dfrac{A-B}{2} \right)=\dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2}\]
We put the $\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)$ in the right hand side of the statement to have;
\[\begin{align}
& \Rightarrow 2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) \\
& \Rightarrow 2\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\times \dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2} \\
& \Rightarrow \dfrac{\left( {{e}^{\dfrac{A+B}{2}}}-{{e}^{{-}\dfrac{A+B}{2}}} \right)\left( {{e}^{\dfrac{A-B}{2}}}+e{^{{-}\dfrac{A-B}{2}}} \right)}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}+{{e}^{\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}}{2} \\
\end{align}\]
We use the exponential identity ${{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B+A-B}{2}}}+{{e}^{\dfrac{A+B-A+B}{2}}}-{{e}^{\dfrac{-A-B+A-B}{2}}}-{{e}^{\dfrac{-A-B-A+B}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{2A}{2}}}+{{e}^{\dfrac{2B}{2}}}-{{e}^{\dfrac{-2B}{2}}}-{{e}^{\dfrac{-2A}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}+{{e}^{B}}-{{e}^{-B}}-{{e}^{-A}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}-{{e}^{-A}}}{2}+\dfrac{{{e}^{B}}-{{e}^{-B}}}{2} \\
\end{align}\]
We use the definition of sine hyperbolic for $x=A,B$ in the above step to have
\[\Rightarrow \sinh A+\sinh B\]
The above result is on the left hand side of the statement. Hence it is proved.
Note: We note that a statement becomes identity when the statement is true for all parameters. The given statement is true for all $A,B$ and hence it is an identity. The trigonometric equivalent of the given identity is $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. We can alternatively prove using identities sum and difference of arguments of sine hyperbolic $\sinh \left( x+y \right)=\sinh x\cosh y+\cosh x\sinh y$ and $\sin \left( x-y \right)=\sinh x\cosh y-\cosh x\sinh y$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

