
Prove the following identities:
$\dfrac{{{a^3}\left( {b + c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}} = bc + ca + ab$
Answer
582.6k+ views
Hint: In this particular type of question use the concept that first convert the denominator of all the terms into standard format i.e. in (a – b), (b – c) and (c – a), then multiply and divide by appropriate values so that the denominator of all the terms become equal so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation:
$\dfrac{{{a^3}\left( {b + c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}} = bc + ca + ab$
Consider the L.H.S of the given equation we have,
$ \Rightarrow \dfrac{{{a^3}\left( {b + c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}$
Now write denominator in the form of (a – b), (b – c) and (c – a) so we have,
$ \Rightarrow \dfrac{{{a^3}\left( {b + c} \right)}}{{ - \left( {a - b} \right)\left( {c - a} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{ - \left( {b - c} \right)\left( {a - b} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{ - \left( {c - a} \right)\left( {b - c} \right)}}$
Now in the above equation multiply and divide by (b – c) in the first term, (c – a) in the second term and (a – b) in the third term so we have,
$ \Rightarrow - \dfrac{{{a^3}\left( {b + c} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{{b^3}\left( {c + a} \right)\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{{a^3}\left( {a + b} \right)\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now as we see that the denominator of all the terms is same so take the denominator term as a L.C.M and in numerator use the property that, $\left( {x + y} \right)\left( {x - y} \right) = {x^2} - {y^2}$ so we have,
$ \Rightarrow \dfrac{{ - {a^3}\left( {{b^2} - {c^2}} \right) - {b^3}\left( {{c^2} - {a^2}} \right) - {c^3}\left( {{a^2} - {b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now simplify the numerator of the above equation we have,
$ \Rightarrow \dfrac{{ - {a^3}{b^2} + {a^3}{c^2} - {b^3}{c^2} + {b^3}{a^2} - {c^3}{a^2} + {c^3}{b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now take $ - {a^2}{b^2}$ common from first and fourth term of the numerator, take ${c^2}$ from second and third term and $ - {c^3}$ from fifth and sixth term we have,
$ \Rightarrow \dfrac{{ - {a^2}{b^2}\left( {a - b} \right) + {c^2}\left( {{a^3} - {b^3}} \right) - {c^3}\left( {{a^2} - {b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now as we know that, $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, and $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so we have,
$ \Rightarrow \dfrac{{ - {a^2}{b^2}\left( {a - b} \right) + {c^2}\left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) - {c^3}\left( {a - b} \right)\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \left( {a - b} \right)\dfrac{{ - {a^2}{b^2} + {c^2}\left( {{a^2} + {b^2} + ab} \right) - {c^3}\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{ - {a^2}{b^2} + {c^2}\left( {{a^2} + {b^2} + ab} \right) - {c^3}\left( {a + b} \right)}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
Now again simplify the numerator of the above equation we have,
$ \Rightarrow \dfrac{{ - {a^2}{b^2} + {c^2}{a^2} + {c^2}{b^2} + {c^2}ab - a{c^3} - b{c^3}}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
Now take $ - {a^2}$ common from first and second term of the numerator, take $b{c^2}$ from third and sixth term and $a{c^2}$ from fourth and fifth term we have,
$ \Rightarrow \dfrac{{ - {a^2}\left( {{b^2} - {c^2}} \right) + {c^2}b\left( {b - c} \right) + {c^2}a\left( {b - c} \right)}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{ - {a^2}\left( {b - c} \right)\left( {b + c} \right) + {c^2}b\left( {b - c} \right) + {c^2}a\left( {b - c} \right)}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \left( {b - c} \right)\dfrac{{ - {a^2}\left( {b + c} \right) + {c^2}b + {c^2}a}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{ - {a^2}\left( {b + c} \right) + {c^2}b + {c^2}a}}{{\left( {c - a} \right)}}$
Now again simplify the numerator of the above equation we have,
$ \Rightarrow \dfrac{{ - {a^2}b - {a^2}c + {c^2}b + {c^2}a}}{{\left( {c - a} \right)}}$
Now take $\left( b \right)$ common from first and third term of the numerator, and take $ac$ from second and fourth term we have,
$ \Rightarrow \dfrac{{b\left( {{c^2} - {a^2}} \right) + ac\left( {c - a} \right)}}{{\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{b\left( {c - a} \right)\left( {c + a} \right) + ac\left( {c - a} \right)}}{{\left( {c - a} \right)}}$
$ \Rightarrow \left( {c - a} \right)\dfrac{{b\left( {c + a} \right) + ac}}{{\left( {c - a} \right)}}$
$ \Rightarrow b\left( {c + a} \right) + ac = bc + ba + ac$
= R.H.S
Hence Proved
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of the given functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer.
Complete step-by-step answer:
Given equation:
$\dfrac{{{a^3}\left( {b + c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}} = bc + ca + ab$
Consider the L.H.S of the given equation we have,
$ \Rightarrow \dfrac{{{a^3}\left( {b + c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}$
Now write denominator in the form of (a – b), (b – c) and (c – a) so we have,
$ \Rightarrow \dfrac{{{a^3}\left( {b + c} \right)}}{{ - \left( {a - b} \right)\left( {c - a} \right)}} + \dfrac{{{b^3}\left( {c + a} \right)}}{{ - \left( {b - c} \right)\left( {a - b} \right)}} + \dfrac{{{a^3}\left( {a + b} \right)}}{{ - \left( {c - a} \right)\left( {b - c} \right)}}$
Now in the above equation multiply and divide by (b – c) in the first term, (c – a) in the second term and (a – b) in the third term so we have,
$ \Rightarrow - \dfrac{{{a^3}\left( {b + c} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{{b^3}\left( {c + a} \right)\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{{a^3}\left( {a + b} \right)\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now as we see that the denominator of all the terms is same so take the denominator term as a L.C.M and in numerator use the property that, $\left( {x + y} \right)\left( {x - y} \right) = {x^2} - {y^2}$ so we have,
$ \Rightarrow \dfrac{{ - {a^3}\left( {{b^2} - {c^2}} \right) - {b^3}\left( {{c^2} - {a^2}} \right) - {c^3}\left( {{a^2} - {b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now simplify the numerator of the above equation we have,
$ \Rightarrow \dfrac{{ - {a^3}{b^2} + {a^3}{c^2} - {b^3}{c^2} + {b^3}{a^2} - {c^3}{a^2} + {c^3}{b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now take $ - {a^2}{b^2}$ common from first and fourth term of the numerator, take ${c^2}$ from second and third term and $ - {c^3}$ from fifth and sixth term we have,
$ \Rightarrow \dfrac{{ - {a^2}{b^2}\left( {a - b} \right) + {c^2}\left( {{a^3} - {b^3}} \right) - {c^3}\left( {{a^2} - {b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now as we know that, $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, and $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so we have,
$ \Rightarrow \dfrac{{ - {a^2}{b^2}\left( {a - b} \right) + {c^2}\left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) - {c^3}\left( {a - b} \right)\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \left( {a - b} \right)\dfrac{{ - {a^2}{b^2} + {c^2}\left( {{a^2} + {b^2} + ab} \right) - {c^3}\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{ - {a^2}{b^2} + {c^2}\left( {{a^2} + {b^2} + ab} \right) - {c^3}\left( {a + b} \right)}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
Now again simplify the numerator of the above equation we have,
$ \Rightarrow \dfrac{{ - {a^2}{b^2} + {c^2}{a^2} + {c^2}{b^2} + {c^2}ab - a{c^3} - b{c^3}}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
Now take $ - {a^2}$ common from first and second term of the numerator, take $b{c^2}$ from third and sixth term and $a{c^2}$ from fourth and fifth term we have,
$ \Rightarrow \dfrac{{ - {a^2}\left( {{b^2} - {c^2}} \right) + {c^2}b\left( {b - c} \right) + {c^2}a\left( {b - c} \right)}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{ - {a^2}\left( {b - c} \right)\left( {b + c} \right) + {c^2}b\left( {b - c} \right) + {c^2}a\left( {b - c} \right)}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \left( {b - c} \right)\dfrac{{ - {a^2}\left( {b + c} \right) + {c^2}b + {c^2}a}}{{\left( {b - c} \right)\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{ - {a^2}\left( {b + c} \right) + {c^2}b + {c^2}a}}{{\left( {c - a} \right)}}$
Now again simplify the numerator of the above equation we have,
$ \Rightarrow \dfrac{{ - {a^2}b - {a^2}c + {c^2}b + {c^2}a}}{{\left( {c - a} \right)}}$
Now take $\left( b \right)$ common from first and third term of the numerator, and take $ac$ from second and fourth term we have,
$ \Rightarrow \dfrac{{b\left( {{c^2} - {a^2}} \right) + ac\left( {c - a} \right)}}{{\left( {c - a} \right)}}$
$ \Rightarrow \dfrac{{b\left( {c - a} \right)\left( {c + a} \right) + ac\left( {c - a} \right)}}{{\left( {c - a} \right)}}$
$ \Rightarrow \left( {c - a} \right)\dfrac{{b\left( {c + a} \right) + ac}}{{\left( {c - a} \right)}}$
$ \Rightarrow b\left( {c + a} \right) + ac = bc + ba + ac$
= R.H.S
Hence Proved
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of the given functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

