
Prove the following: \[frac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}} = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
Answer
602.1k+ views
Hint: Simplify the left-hand side of the equation using sum of cosine formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] and formula for cos2x, that is, \[\cos 2x = 2{\cos ^2}x - 1\]. Then, simplify the right-hand side of the equation using the formula \[\cos A\cos B - \sin A\sin B = \cos (A + B)\] and then complete the proof.
Complete step by step answer:
Let the left-hand side of the equation be LHS.
\[LHS = \dfrac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}}............(1)\]
We know that the formula for the sum of cosines is given as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Using this formula in equation (1), we have:
\[LHS = \dfrac{{2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{3\theta - 3\phi }}{2}} \right)}}{{2\cos (\theta - \phi ) - 1}}\]
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\cos \left( {3\left( {\dfrac{{\theta - \phi }}{2}} \right)} \right)}}{{2\cos (\theta - \phi ) - 1}}............(2)\]
We know the formula for cos3x, given as follows:
\[\cos 3x = 4{\cos ^3}x - 3\cos x\]
Using this formula in equation (2), we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{2\cos (\theta - \phi ) - 1}}............(3)\]
We know the formula for cos2x, given as follows:
\[\cos 2x = 2{\cos ^2}x - 1\]
Using this formula in equation (3) for \[2\cos (\theta - \phi )\], we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{4{{\cos }^2}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3}}............(4)\]
We can cancel few terms in equation (4) to obtain the equation as follows:
\[LHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).........(5)\]
Hence, we simplified the LHS to equation (5).
We now simplify the right-hand side by assigning it to RHS.
\[RHS = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
We multiply the terms and try to simplify the following:
\[RHS = \cos \theta \cos (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(6)\]
We can rewrite equation (6) as follows:
\[RHS = \cos \theta \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(7)\]
We know the following formula:
\[\cos A\cos B - \sin A\sin B = \cos (A + B).......(8)\]
Using formula (8) in equation (7), we get:
\[RHS = \cos (2\theta + \phi ) + \cos (\theta + 2\phi ).........(9)\]
Now, we use the formula of sum of cosines as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
\[RHS = 2\cos \dfrac{{(\theta + 2\phi ) + (\theta + 2\phi )}}{2}\cos \dfrac{{(2\theta + \phi ) - (\theta + 2\phi )}}{2}\]
Simplifying this equation, we get:
\[RHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)..........(10)\]
Comparing equation (5) with equation (10), we have:
LHS=RHS
Hence, proved.
Note: It will be difficult to directly go from the left-hand side of the equation to the right-hand side. So, simplify both sides to a common term and hence, prove by equality.
Complete step by step answer:
Let the left-hand side of the equation be LHS.
\[LHS = \dfrac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}}............(1)\]
We know that the formula for the sum of cosines is given as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Using this formula in equation (1), we have:
\[LHS = \dfrac{{2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{3\theta - 3\phi }}{2}} \right)}}{{2\cos (\theta - \phi ) - 1}}\]
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\cos \left( {3\left( {\dfrac{{\theta - \phi }}{2}} \right)} \right)}}{{2\cos (\theta - \phi ) - 1}}............(2)\]
We know the formula for cos3x, given as follows:
\[\cos 3x = 4{\cos ^3}x - 3\cos x\]
Using this formula in equation (2), we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{2\cos (\theta - \phi ) - 1}}............(3)\]
We know the formula for cos2x, given as follows:
\[\cos 2x = 2{\cos ^2}x - 1\]
Using this formula in equation (3) for \[2\cos (\theta - \phi )\], we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{4{{\cos }^2}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3}}............(4)\]
We can cancel few terms in equation (4) to obtain the equation as follows:
\[LHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).........(5)\]
Hence, we simplified the LHS to equation (5).
We now simplify the right-hand side by assigning it to RHS.
\[RHS = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
We multiply the terms and try to simplify the following:
\[RHS = \cos \theta \cos (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(6)\]
We can rewrite equation (6) as follows:
\[RHS = \cos \theta \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(7)\]
We know the following formula:
\[\cos A\cos B - \sin A\sin B = \cos (A + B).......(8)\]
Using formula (8) in equation (7), we get:
\[RHS = \cos (2\theta + \phi ) + \cos (\theta + 2\phi ).........(9)\]
Now, we use the formula of sum of cosines as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
\[RHS = 2\cos \dfrac{{(\theta + 2\phi ) + (\theta + 2\phi )}}{2}\cos \dfrac{{(2\theta + \phi ) - (\theta + 2\phi )}}{2}\]
Simplifying this equation, we get:
\[RHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)..........(10)\]
Comparing equation (5) with equation (10), we have:
LHS=RHS
Hence, proved.
Note: It will be difficult to directly go from the left-hand side of the equation to the right-hand side. So, simplify both sides to a common term and hence, prove by equality.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Describe the Salient Features of Indian Economy

The slogan Jai Hind was given by A Lal Bahadur Shastri class 10 social science CBSE

