
Prove the following: \[frac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}} = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
Answer
599.7k+ views
Hint: Simplify the left-hand side of the equation using sum of cosine formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] and formula for cos2x, that is, \[\cos 2x = 2{\cos ^2}x - 1\]. Then, simplify the right-hand side of the equation using the formula \[\cos A\cos B - \sin A\sin B = \cos (A + B)\] and then complete the proof.
Complete step by step answer:
Let the left-hand side of the equation be LHS.
\[LHS = \dfrac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}}............(1)\]
We know that the formula for the sum of cosines is given as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Using this formula in equation (1), we have:
\[LHS = \dfrac{{2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{3\theta - 3\phi }}{2}} \right)}}{{2\cos (\theta - \phi ) - 1}}\]
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\cos \left( {3\left( {\dfrac{{\theta - \phi }}{2}} \right)} \right)}}{{2\cos (\theta - \phi ) - 1}}............(2)\]
We know the formula for cos3x, given as follows:
\[\cos 3x = 4{\cos ^3}x - 3\cos x\]
Using this formula in equation (2), we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{2\cos (\theta - \phi ) - 1}}............(3)\]
We know the formula for cos2x, given as follows:
\[\cos 2x = 2{\cos ^2}x - 1\]
Using this formula in equation (3) for \[2\cos (\theta - \phi )\], we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{4{{\cos }^2}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3}}............(4)\]
We can cancel few terms in equation (4) to obtain the equation as follows:
\[LHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).........(5)\]
Hence, we simplified the LHS to equation (5).
We now simplify the right-hand side by assigning it to RHS.
\[RHS = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
We multiply the terms and try to simplify the following:
\[RHS = \cos \theta \cos (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(6)\]
We can rewrite equation (6) as follows:
\[RHS = \cos \theta \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(7)\]
We know the following formula:
\[\cos A\cos B - \sin A\sin B = \cos (A + B).......(8)\]
Using formula (8) in equation (7), we get:
\[RHS = \cos (2\theta + \phi ) + \cos (\theta + 2\phi ).........(9)\]
Now, we use the formula of sum of cosines as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
\[RHS = 2\cos \dfrac{{(\theta + 2\phi ) + (\theta + 2\phi )}}{2}\cos \dfrac{{(2\theta + \phi ) - (\theta + 2\phi )}}{2}\]
Simplifying this equation, we get:
\[RHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)..........(10)\]
Comparing equation (5) with equation (10), we have:
LHS=RHS
Hence, proved.
Note: It will be difficult to directly go from the left-hand side of the equation to the right-hand side. So, simplify both sides to a common term and hence, prove by equality.
Complete step by step answer:
Let the left-hand side of the equation be LHS.
\[LHS = \dfrac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}}............(1)\]
We know that the formula for the sum of cosines is given as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Using this formula in equation (1), we have:
\[LHS = \dfrac{{2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{3\theta - 3\phi }}{2}} \right)}}{{2\cos (\theta - \phi ) - 1}}\]
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\cos \left( {3\left( {\dfrac{{\theta - \phi }}{2}} \right)} \right)}}{{2\cos (\theta - \phi ) - 1}}............(2)\]
We know the formula for cos3x, given as follows:
\[\cos 3x = 4{\cos ^3}x - 3\cos x\]
Using this formula in equation (2), we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{2\cos (\theta - \phi ) - 1}}............(3)\]
We know the formula for cos2x, given as follows:
\[\cos 2x = 2{\cos ^2}x - 1\]
Using this formula in equation (3) for \[2\cos (\theta - \phi )\], we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{4{{\cos }^2}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3}}............(4)\]
We can cancel few terms in equation (4) to obtain the equation as follows:
\[LHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).........(5)\]
Hence, we simplified the LHS to equation (5).
We now simplify the right-hand side by assigning it to RHS.
\[RHS = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
We multiply the terms and try to simplify the following:
\[RHS = \cos \theta \cos (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(6)\]
We can rewrite equation (6) as follows:
\[RHS = \cos \theta \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(7)\]
We know the following formula:
\[\cos A\cos B - \sin A\sin B = \cos (A + B).......(8)\]
Using formula (8) in equation (7), we get:
\[RHS = \cos (2\theta + \phi ) + \cos (\theta + 2\phi ).........(9)\]
Now, we use the formula of sum of cosines as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
\[RHS = 2\cos \dfrac{{(\theta + 2\phi ) + (\theta + 2\phi )}}{2}\cos \dfrac{{(2\theta + \phi ) - (\theta + 2\phi )}}{2}\]
Simplifying this equation, we get:
\[RHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)..........(10)\]
Comparing equation (5) with equation (10), we have:
LHS=RHS
Hence, proved.
Note: It will be difficult to directly go from the left-hand side of the equation to the right-hand side. So, simplify both sides to a common term and hence, prove by equality.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

