
Prove the following: \[frac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}} = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
Answer
591k+ views
Hint: Simplify the left-hand side of the equation using sum of cosine formula \[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\] and formula for cos2x, that is, \[\cos 2x = 2{\cos ^2}x - 1\]. Then, simplify the right-hand side of the equation using the formula \[\cos A\cos B - \sin A\sin B = \cos (A + B)\] and then complete the proof.
Complete step by step answer:
Let the left-hand side of the equation be LHS.
\[LHS = \dfrac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}}............(1)\]
We know that the formula for the sum of cosines is given as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Using this formula in equation (1), we have:
\[LHS = \dfrac{{2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{3\theta - 3\phi }}{2}} \right)}}{{2\cos (\theta - \phi ) - 1}}\]
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\cos \left( {3\left( {\dfrac{{\theta - \phi }}{2}} \right)} \right)}}{{2\cos (\theta - \phi ) - 1}}............(2)\]
We know the formula for cos3x, given as follows:
\[\cos 3x = 4{\cos ^3}x - 3\cos x\]
Using this formula in equation (2), we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{2\cos (\theta - \phi ) - 1}}............(3)\]
We know the formula for cos2x, given as follows:
\[\cos 2x = 2{\cos ^2}x - 1\]
Using this formula in equation (3) for \[2\cos (\theta - \phi )\], we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{4{{\cos }^2}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3}}............(4)\]
We can cancel few terms in equation (4) to obtain the equation as follows:
\[LHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).........(5)\]
Hence, we simplified the LHS to equation (5).
We now simplify the right-hand side by assigning it to RHS.
\[RHS = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
We multiply the terms and try to simplify the following:
\[RHS = \cos \theta \cos (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(6)\]
We can rewrite equation (6) as follows:
\[RHS = \cos \theta \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(7)\]
We know the following formula:
\[\cos A\cos B - \sin A\sin B = \cos (A + B).......(8)\]
Using formula (8) in equation (7), we get:
\[RHS = \cos (2\theta + \phi ) + \cos (\theta + 2\phi ).........(9)\]
Now, we use the formula of sum of cosines as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
\[RHS = 2\cos \dfrac{{(\theta + 2\phi ) + (\theta + 2\phi )}}{2}\cos \dfrac{{(2\theta + \phi ) - (\theta + 2\phi )}}{2}\]
Simplifying this equation, we get:
\[RHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)..........(10)\]
Comparing equation (5) with equation (10), we have:
LHS=RHS
Hence, proved.
Note: It will be difficult to directly go from the left-hand side of the equation to the right-hand side. So, simplify both sides to a common term and hence, prove by equality.
Complete step by step answer:
Let the left-hand side of the equation be LHS.
\[LHS = \dfrac{{\cos 3\theta + \cos 3\phi }}{{2\cos (\theta - \phi ) - 1}}............(1)\]
We know that the formula for the sum of cosines is given as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Using this formula in equation (1), we have:
\[LHS = \dfrac{{2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{3\theta - 3\phi }}{2}} \right)}}{{2\cos (\theta - \phi ) - 1}}\]
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\cos \left( {3\left( {\dfrac{{\theta - \phi }}{2}} \right)} \right)}}{{2\cos (\theta - \phi ) - 1}}............(2)\]
We know the formula for cos3x, given as follows:
\[\cos 3x = 4{\cos ^3}x - 3\cos x\]
Using this formula in equation (2), we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{2\cos (\theta - \phi ) - 1}}............(3)\]
We know the formula for cos2x, given as follows:
\[\cos 2x = 2{\cos ^2}x - 1\]
Using this formula in equation (3) for \[2\cos (\theta - \phi )\], we get:
\[LHS = \dfrac{{2\cos \left( {3\left( {\dfrac{{\theta + \phi }}{2}} \right)} \right)\left[ {4{{\cos }^3}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)} \right]}}{{4{{\cos }^2}\left( {\dfrac{{\theta - \phi }}{2}} \right) - 3}}............(4)\]
We can cancel few terms in equation (4) to obtain the equation as follows:
\[LHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).........(5)\]
Hence, we simplified the LHS to equation (5).
We now simplify the right-hand side by assigning it to RHS.
\[RHS = (\cos \theta + \cos \phi )\cos (\theta + \phi ) - (\sin \theta + \sin \phi )\sin (\theta + \phi )\]
We multiply the terms and try to simplify the following:
\[RHS = \cos \theta \cos (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(6)\]
We can rewrite equation (6) as follows:
\[RHS = \cos \theta \cos (\theta + \phi ) - \sin \theta \sin (\theta + \phi ) + \cos \phi \cos (\theta + \phi ) - \sin \phi \sin (\theta + \phi )......(7)\]
We know the following formula:
\[\cos A\cos B - \sin A\sin B = \cos (A + B).......(8)\]
Using formula (8) in equation (7), we get:
\[RHS = \cos (2\theta + \phi ) + \cos (\theta + 2\phi ).........(9)\]
Now, we use the formula of sum of cosines as follows:
\[\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
\[RHS = 2\cos \dfrac{{(\theta + 2\phi ) + (\theta + 2\phi )}}{2}\cos \dfrac{{(2\theta + \phi ) - (\theta + 2\phi )}}{2}\]
Simplifying this equation, we get:
\[RHS = 2\cos \left( {\dfrac{{3\theta + 3\phi }}{2}} \right)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)..........(10)\]
Comparing equation (5) with equation (10), we have:
LHS=RHS
Hence, proved.
Note: It will be difficult to directly go from the left-hand side of the equation to the right-hand side. So, simplify both sides to a common term and hence, prove by equality.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

