
Prove the following expression, ${{\cos }^{2}}48{}^\circ -{{\sin }^{2}}12{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
Answer
612k+ views
Hint: To prove the relation, we should know that $\sin \theta =\cos \left( 90{}^\circ -\theta \right)$. And we should also know a few addition formulas of trigonometry like, $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$. We should also know, ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. By using these relations, we can prove the required result.
Complete Step-by-Step solution:
To prove this relation, we will first consider the left hand side or the LHS of the desired expression, that is, ${{\cos }^{2}}48{}^\circ -{{\sin }^{2}}12{}^\circ $. We know that, $\sin \theta =\cos \left( 90{}^\circ -\theta \right)$, so by applying that, we get LHS as,
$\begin{align}
& ={{\cos }^{2}}48{}^\circ -{{\cos }^{2}}\left( 90-12{}^\circ \right) \\
& ={{\cos }^{2}}48{}^\circ -{{\cos }^{2}}78{}^\circ \\
\end{align}$
Now, we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, so by applying that in the above expression, we get the LHS as,
$=\left( \cos 48{}^\circ +\cos 78{}^\circ \right)\left( \cos 48{}^\circ -\cos 78{}^\circ \right)$
Now, we know that $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$, so, by applying that, we get the LHS as,
\[\begin{align}
& =\left[ 2\cos \left( \dfrac{48{}^\circ +78{}^\circ }{2} \right)\cos \left( \dfrac{48{}^\circ -78}{2}{}^\circ \right) \right]\times \left[ -2\sin \left( \dfrac{48{}^\circ +78{}^\circ }{2} \right)\sin \left( \dfrac{48{}^\circ -78{}^\circ }{2} \right) \right] \\
& =\left[ 2\left( \cos 63{}^\circ \right)\left( \cos 15{}^\circ \right) \right]\times \left[ -2\left( \sin 63{}^\circ \right)\left( \sin \left( -15{}^\circ \right) \right) \right] \\
\end{align}\]
By rearranging the terms, we get,
\[=\left[ 2\left( \sin 63{}^\circ \right)\left( \cos 63{}^\circ \right) \right]\times \left[ -2\sin \left( -15{}^\circ \right)\cos \left( 15{}^\circ \right) \right]\]
We know that $\sin \left( -\theta \right)=-\sin \theta $ and $2\sin \theta \cos \theta =\sin 2\theta $, so by applying that, we get LHS as,
$\begin{align}
& =\left[ 2\left( \sin 63{}^\circ \right)\left( \cos 63{}^\circ \right) \right]\times \left[ 2\left( \sin 15{}^\circ \right)\left( \cos 15{}^\circ \right) \right] \\
& =\sin 2\left( 63{}^\circ \right)\times \sin 2\left( 15{}^\circ \right) \\
& =\sin \left( 126{}^\circ \right)\times \sin \left( 30{}^\circ \right) \\
\end{align}$
We know that $\sin 30{}^\circ =\dfrac{1}{2}$ and that $\sin \left( 90+\theta \right)=\cos \theta $. So, by applying these and rearranging the terms, we get the LHS as,
$\begin{align}
& =\sin 30{}^\circ \sin \left( 90{}^\circ +36{}^\circ \right) \\
& =\dfrac{1}{2}\cos 36{}^\circ \\
\end{align}$
We should know that $\cos 36{}^\circ =\dfrac{\sqrt{5}+1}{4}$. So, substituting the same in the above we get the LHS as,
$\begin{align}
& =\dfrac{1}{2}.\dfrac{\sqrt{5}+1}{4} \\
& =\dfrac{\sqrt{5}+1}{8} \\
\end{align}$
Which is equal to what is given in the right-hand side of the expression to be proved in the question.
Hence, we have thus proved the expression given in the question, that is, ${{\cos }^{2}}48{}^\circ -{{\sin }^{2}}12{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
Note: We can also find the value of $\cos 36{}^\circ $ by assuming its value as $18{}^\circ =A$ and $90{}^\circ =5A$. This is nothing but $90{}^\circ =2A+3A$ or we can also say it as, $2A=90{}^\circ -3A$. Now we will take sin to both the sides and will form a quadratic equation. By doing so, we will get, $\sin 18{}^\circ =\dfrac{-1+\sqrt{5}}{4}$. We know that $\cos 2\theta =1-2{{\sin }^{2}}\theta $. So, we will get, $\cos 36{}^\circ =\dfrac{\sqrt{5}+1}{4}$.
Complete Step-by-Step solution:
To prove this relation, we will first consider the left hand side or the LHS of the desired expression, that is, ${{\cos }^{2}}48{}^\circ -{{\sin }^{2}}12{}^\circ $. We know that, $\sin \theta =\cos \left( 90{}^\circ -\theta \right)$, so by applying that, we get LHS as,
$\begin{align}
& ={{\cos }^{2}}48{}^\circ -{{\cos }^{2}}\left( 90-12{}^\circ \right) \\
& ={{\cos }^{2}}48{}^\circ -{{\cos }^{2}}78{}^\circ \\
\end{align}$
Now, we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$, so by applying that in the above expression, we get the LHS as,
$=\left( \cos 48{}^\circ +\cos 78{}^\circ \right)\left( \cos 48{}^\circ -\cos 78{}^\circ \right)$
Now, we know that $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$, so, by applying that, we get the LHS as,
\[\begin{align}
& =\left[ 2\cos \left( \dfrac{48{}^\circ +78{}^\circ }{2} \right)\cos \left( \dfrac{48{}^\circ -78}{2}{}^\circ \right) \right]\times \left[ -2\sin \left( \dfrac{48{}^\circ +78{}^\circ }{2} \right)\sin \left( \dfrac{48{}^\circ -78{}^\circ }{2} \right) \right] \\
& =\left[ 2\left( \cos 63{}^\circ \right)\left( \cos 15{}^\circ \right) \right]\times \left[ -2\left( \sin 63{}^\circ \right)\left( \sin \left( -15{}^\circ \right) \right) \right] \\
\end{align}\]
By rearranging the terms, we get,
\[=\left[ 2\left( \sin 63{}^\circ \right)\left( \cos 63{}^\circ \right) \right]\times \left[ -2\sin \left( -15{}^\circ \right)\cos \left( 15{}^\circ \right) \right]\]
We know that $\sin \left( -\theta \right)=-\sin \theta $ and $2\sin \theta \cos \theta =\sin 2\theta $, so by applying that, we get LHS as,
$\begin{align}
& =\left[ 2\left( \sin 63{}^\circ \right)\left( \cos 63{}^\circ \right) \right]\times \left[ 2\left( \sin 15{}^\circ \right)\left( \cos 15{}^\circ \right) \right] \\
& =\sin 2\left( 63{}^\circ \right)\times \sin 2\left( 15{}^\circ \right) \\
& =\sin \left( 126{}^\circ \right)\times \sin \left( 30{}^\circ \right) \\
\end{align}$
We know that $\sin 30{}^\circ =\dfrac{1}{2}$ and that $\sin \left( 90+\theta \right)=\cos \theta $. So, by applying these and rearranging the terms, we get the LHS as,
$\begin{align}
& =\sin 30{}^\circ \sin \left( 90{}^\circ +36{}^\circ \right) \\
& =\dfrac{1}{2}\cos 36{}^\circ \\
\end{align}$
We should know that $\cos 36{}^\circ =\dfrac{\sqrt{5}+1}{4}$. So, substituting the same in the above we get the LHS as,
$\begin{align}
& =\dfrac{1}{2}.\dfrac{\sqrt{5}+1}{4} \\
& =\dfrac{\sqrt{5}+1}{8} \\
\end{align}$
Which is equal to what is given in the right-hand side of the expression to be proved in the question.
Hence, we have thus proved the expression given in the question, that is, ${{\cos }^{2}}48{}^\circ -{{\sin }^{2}}12{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
Note: We can also find the value of $\cos 36{}^\circ $ by assuming its value as $18{}^\circ =A$ and $90{}^\circ =5A$. This is nothing but $90{}^\circ =2A+3A$ or we can also say it as, $2A=90{}^\circ -3A$. Now we will take sin to both the sides and will form a quadratic equation. By doing so, we will get, $\sin 18{}^\circ =\dfrac{-1+\sqrt{5}}{4}$. We know that $\cos 2\theta =1-2{{\sin }^{2}}\theta $. So, we will get, $\cos 36{}^\circ =\dfrac{\sqrt{5}+1}{4}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

