
Prove the following:
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta \]
Answer
597k+ views
Hint - We will prove that the Left Hand Side and the Right Hand Side of the given trigonometric equation are equal, for which, we first write down the given equation and start solving either the LHS or the RHS of the equation by taking the help of various trigonometric identities.
Complete step-by-step answer:
The given equation in the question is,
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta \]
Taking LHS, we get
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }}\]
Now, we will make it in terms of \[\sin \theta \] and $\cos \theta $.
We know that, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], then it becomes,
= \[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}\]
Now, by taking LCM in the denominator, we get
=\[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin }}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}\]
= \[\dfrac{{\sin \theta }}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\sin \theta - \cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\cos \theta - \sin \theta }}\]
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\cos \theta - \sin \theta } \right)}}\]
By taking minus common from the second term,
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
= \[\dfrac{{{{\sin }^3}\theta - {{\cos }^3}\theta }}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
Now, in the numerator, \[{\sin ^3}\theta - {\cos ^3}\theta \] represents an identity, i.e., \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\], therefore, it becomes,
= \[\dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {{{\sin }^2}\theta + \sin \theta \cdot \cos \theta + {{\cos }^2}\theta } \right)}}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
So, by cancelling the equal terms in the numerator and denominator, we obtain
=\[\dfrac{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cdot \cos \theta } \right)}}{{\cos \theta \cdot \sin \theta }}\]
= \[\dfrac{{1 + \sin \theta \cdot \cos \theta }}{{\cos \theta \cdot \sin \theta }}\] \[\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]\]
Now, by separating the terms, we obtain
= \[\dfrac{1}{{\cos \theta \cdot \sin \theta }} + \dfrac{{\sin \theta \cdot \cos \theta }}{{sin\theta \cdot \cos \theta }}\]
By cancelling out the equal terms,
= \[\sec \theta \cdot \ co sec\theta + 1\] , which can also be written as,
=\[1 + \sec \theta \cdot \ co sec\theta \]
=RHS
Hence Proved.
Note – One should be careful while doing such questions because in these questions we have to use different identities which might be confusing sometimes. So, there should be no doubt about any identity and before doing these questions one must be clear in all aspects.
Complete step-by-step answer:
The given equation in the question is,
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta \]
Taking LHS, we get
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }}\]
Now, we will make it in terms of \[\sin \theta \] and $\cos \theta $.
We know that, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], then it becomes,
= \[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}\]
Now, by taking LCM in the denominator, we get
=\[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin }}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}\]
= \[\dfrac{{\sin \theta }}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\sin \theta - \cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\cos \theta - \sin \theta }}\]
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\cos \theta - \sin \theta } \right)}}\]
By taking minus common from the second term,
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
= \[\dfrac{{{{\sin }^3}\theta - {{\cos }^3}\theta }}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
Now, in the numerator, \[{\sin ^3}\theta - {\cos ^3}\theta \] represents an identity, i.e., \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\], therefore, it becomes,
= \[\dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {{{\sin }^2}\theta + \sin \theta \cdot \cos \theta + {{\cos }^2}\theta } \right)}}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
So, by cancelling the equal terms in the numerator and denominator, we obtain
=\[\dfrac{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cdot \cos \theta } \right)}}{{\cos \theta \cdot \sin \theta }}\]
= \[\dfrac{{1 + \sin \theta \cdot \cos \theta }}{{\cos \theta \cdot \sin \theta }}\] \[\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]\]
Now, by separating the terms, we obtain
= \[\dfrac{1}{{\cos \theta \cdot \sin \theta }} + \dfrac{{\sin \theta \cdot \cos \theta }}{{sin\theta \cdot \cos \theta }}\]
By cancelling out the equal terms,
= \[\sec \theta \cdot \ co sec\theta + 1\] , which can also be written as,
=\[1 + \sec \theta \cdot \ co sec\theta \]
=RHS
Hence Proved.
Note – One should be careful while doing such questions because in these questions we have to use different identities which might be confusing sometimes. So, there should be no doubt about any identity and before doing these questions one must be clear in all aspects.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

