
Prove the following:
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta \]
Answer
597.9k+ views
Hint - We will prove that the Left Hand Side and the Right Hand Side of the given trigonometric equation are equal, for which, we first write down the given equation and start solving either the LHS or the RHS of the equation by taking the help of various trigonometric identities.
Complete step-by-step answer:
The given equation in the question is,
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta \]
Taking LHS, we get
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }}\]
Now, we will make it in terms of \[\sin \theta \] and $\cos \theta $.
We know that, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], then it becomes,
= \[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}\]
Now, by taking LCM in the denominator, we get
=\[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin }}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}\]
= \[\dfrac{{\sin \theta }}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\sin \theta - \cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\cos \theta - \sin \theta }}\]
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\cos \theta - \sin \theta } \right)}}\]
By taking minus common from the second term,
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
= \[\dfrac{{{{\sin }^3}\theta - {{\cos }^3}\theta }}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
Now, in the numerator, \[{\sin ^3}\theta - {\cos ^3}\theta \] represents an identity, i.e., \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\], therefore, it becomes,
= \[\dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {{{\sin }^2}\theta + \sin \theta \cdot \cos \theta + {{\cos }^2}\theta } \right)}}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
So, by cancelling the equal terms in the numerator and denominator, we obtain
=\[\dfrac{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cdot \cos \theta } \right)}}{{\cos \theta \cdot \sin \theta }}\]
= \[\dfrac{{1 + \sin \theta \cdot \cos \theta }}{{\cos \theta \cdot \sin \theta }}\] \[\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]\]
Now, by separating the terms, we obtain
= \[\dfrac{1}{{\cos \theta \cdot \sin \theta }} + \dfrac{{\sin \theta \cdot \cos \theta }}{{sin\theta \cdot \cos \theta }}\]
By cancelling out the equal terms,
= \[\sec \theta \cdot \ co sec\theta + 1\] , which can also be written as,
=\[1 + \sec \theta \cdot \ co sec\theta \]
=RHS
Hence Proved.
Note – One should be careful while doing such questions because in these questions we have to use different identities which might be confusing sometimes. So, there should be no doubt about any identity and before doing these questions one must be clear in all aspects.
Complete step-by-step answer:
The given equation in the question is,
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot \ co sec\theta \]
Taking LHS, we get
\[\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }}\]
Now, we will make it in terms of \[\sin \theta \] and $\cos \theta $.
We know that, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] and \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], then it becomes,
= \[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}\]
Now, by taking LCM in the denominator, we get
=\[\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin }}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}\]
= \[\dfrac{{\sin \theta }}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\sin \theta - \cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\cos \theta - \sin \theta }}\]
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\cos \theta - \sin \theta } \right)}}\]
By taking minus common from the second term,
= \[\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
= \[\dfrac{{{{\sin }^3}\theta - {{\cos }^3}\theta }}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
Now, in the numerator, \[{\sin ^3}\theta - {\cos ^3}\theta \] represents an identity, i.e., \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\], therefore, it becomes,
= \[\dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {{{\sin }^2}\theta + \sin \theta \cdot \cos \theta + {{\cos }^2}\theta } \right)}}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}\]
So, by cancelling the equal terms in the numerator and denominator, we obtain
=\[\dfrac{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cdot \cos \theta } \right)}}{{\cos \theta \cdot \sin \theta }}\]
= \[\dfrac{{1 + \sin \theta \cdot \cos \theta }}{{\cos \theta \cdot \sin \theta }}\] \[\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]\]
Now, by separating the terms, we obtain
= \[\dfrac{1}{{\cos \theta \cdot \sin \theta }} + \dfrac{{\sin \theta \cdot \cos \theta }}{{sin\theta \cdot \cos \theta }}\]
By cancelling out the equal terms,
= \[\sec \theta \cdot \ co sec\theta + 1\] , which can also be written as,
=\[1 + \sec \theta \cdot \ co sec\theta \]
=RHS
Hence Proved.
Note – One should be careful while doing such questions because in these questions we have to use different identities which might be confusing sometimes. So, there should be no doubt about any identity and before doing these questions one must be clear in all aspects.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

