
Prove the following:
\[\dfrac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}} = 2\sin x\]
Answer
511.2k+ views
Hint: We can take the LHS of the given equation. Then we can simplify its numerator using the trigonometric identity \[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]. We can simplify the denominator using the identity $\cos 2A = {\cos ^2}A - {\sin ^2}A$. On doing further calculations, we will obtain the RHS of the equation. We can say the given equation is true when L.H.S=R.H.S
Complete step-by-step answer:
We need to prove that \[\dfrac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}} = 2\sin x\]
Let us look at the LHS,
$LHS = \dfrac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}}$ … (1)
We can consider the numerator of the LHS
We know that \[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( x \right) - \sin \left( {3x} \right) = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( x \right) - \sin \left( {3x} \right) = 2\cos \left( {2x} \right)\sin \left( { - x} \right)\]
We know that\[\sin \left( { - x} \right) = - \sin \left( x \right)\]. So, we get,
\[ \Rightarrow \sin \left( x \right) - \sin \left( {3x} \right) = - 2\cos \left( {2x} \right)\sin \left( x \right)\]… (2)
We can consider the denominator of the LHS
We know that $\cos 2A = {\cos ^2}A - {\sin ^2}A$
We can multiply both sides with -1.
$ - \cos 2A = {\sin ^2}A - {\cos ^2}A$
We can substitute the values,
${\sin ^2}x - {\cos ^2}x = - \cos 2x$… (3)
We can substitute (3) and (2) in (1)
$ \Rightarrow LHS = \dfrac{{ - 2\cos \left( {2x} \right)\sin \left( x \right)}}{{ - \cos 2x}}$
On further simplification, we get,
$ \Rightarrow LHS = 2\sin x$
RHS is also equal to \[2\sin x\]. So, we can write,
L.H.S=R.H.S
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1.\[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2.\[\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
3.\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
4.\[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
5.$\cos 2A = {\cos ^2}A - {\sin ^2}A$
6.$\sin 2A = 2\sin A\cos A$
7.\[\sin \left( { - x} \right) = - \sin \left( x \right)\]
8.\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $or multiples of $\pi $with the angle retains the ratio and adding $\dfrac{\pi }{2}$or odd multiples of $\dfrac{\pi }{2}$will change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.
Complete step-by-step answer:
We need to prove that \[\dfrac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}} = 2\sin x\]
Let us look at the LHS,
$LHS = \dfrac{{\sin x - \sin 3x}}{{{{\sin }^2}x - {{\cos }^2}x}}$ … (1)
We can consider the numerator of the LHS
We know that \[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( x \right) - \sin \left( {3x} \right) = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( x \right) - \sin \left( {3x} \right) = 2\cos \left( {2x} \right)\sin \left( { - x} \right)\]
We know that\[\sin \left( { - x} \right) = - \sin \left( x \right)\]. So, we get,
\[ \Rightarrow \sin \left( x \right) - \sin \left( {3x} \right) = - 2\cos \left( {2x} \right)\sin \left( x \right)\]… (2)
We can consider the denominator of the LHS
We know that $\cos 2A = {\cos ^2}A - {\sin ^2}A$
We can multiply both sides with -1.
$ - \cos 2A = {\sin ^2}A - {\cos ^2}A$
We can substitute the values,
${\sin ^2}x - {\cos ^2}x = - \cos 2x$… (3)
We can substitute (3) and (2) in (1)
$ \Rightarrow LHS = \dfrac{{ - 2\cos \left( {2x} \right)\sin \left( x \right)}}{{ - \cos 2x}}$
On further simplification, we get,
$ \Rightarrow LHS = 2\sin x$
RHS is also equal to \[2\sin x\]. So, we can write,
L.H.S=R.H.S
Hence the equation is proved.
Note: We must be familiar with the following trigonometric identities used in this problem.
1.\[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
2.\[\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
3.\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
4.\[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
5.$\cos 2A = {\cos ^2}A - {\sin ^2}A$
6.$\sin 2A = 2\sin A\cos A$
7.\[\sin \left( { - x} \right) = - \sin \left( x \right)\]
8.\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $or multiples of $\pi $with the angle retains the ratio and adding $\dfrac{\pi }{2}$or odd multiples of $\dfrac{\pi }{2}$will change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
