
Prove the following:
\[\dfrac{{\sin 5x + \sin 3x}}{{\cos 5x + \cos 3x}} = \tan 4x\]
Answer
581.7k+ views
Hint: We can take the LHS of the given equation. Then we can simplify its numeratorusing the trigonometric identities \[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]. We can simplify the denominator using the identity \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]. On doing further calculations, we will obtain the RHS of the equation. We can say the given equation is true when $LHS = RHS$
Complete step by step Answer:
We need to prove that \[\dfrac{{\sin 5x + \sin 3x}}{{\cos 5x + \cos 3x}} = \tan 4x\]
Let us look at the LHS,
$LHS = \dfrac{{\sin 5x + \sin 3x}}{{\cos 5x + \cos 3x}}$ … (1)
We can consider the numerator of the LHS
We know that \[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {4x} \right)\cos \left( x \right)\]… (2)
We can consider the denominator of the LHS
We know that \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \cos \left( {5x} \right) + \cos \left( {3x} \right) = 2\cos \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \cos \left( {5x} \right) + \cos \left( {3x} \right) = 2\cos \left( {4x} \right)\cos \left( x \right)\]… (3)
We can substitute (3) and (2) in (1)
$ \Rightarrow LHS = \dfrac{{2\sin 4x\cos x}}{{2\cos 4x\cos x}}$
On further simplification, we get,
\[ \Rightarrow LHS = \dfrac{{\sin 4x}}{{\cos 4x}}\]
We know that \[\tan A = \dfrac{{\sin A}}{{\cos A}}\]. So, we get,
\[ \Rightarrow LHS = \tan 4x\]
RHS is also equal to\[\tan 4x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar to the following trigonometric identities used in this problem.
\[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( { - x} \right) = - \sin \left( x \right)\]
\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $or multiples of $\pi $with the angle retains the ratio and adding $\dfrac{\pi }{2}$or odd multiples of $\dfrac{\pi }{2}$will change the ratio.While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.
Complete step by step Answer:
We need to prove that \[\dfrac{{\sin 5x + \sin 3x}}{{\cos 5x + \cos 3x}} = \tan 4x\]
Let us look at the LHS,
$LHS = \dfrac{{\sin 5x + \sin 3x}}{{\cos 5x + \cos 3x}}$ … (1)
We can consider the numerator of the LHS
We know that \[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {4x} \right)\cos \left( x \right)\]… (2)
We can consider the denominator of the LHS
We know that \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \cos \left( {5x} \right) + \cos \left( {3x} \right) = 2\cos \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \cos \left( {5x} \right) + \cos \left( {3x} \right) = 2\cos \left( {4x} \right)\cos \left( x \right)\]… (3)
We can substitute (3) and (2) in (1)
$ \Rightarrow LHS = \dfrac{{2\sin 4x\cos x}}{{2\cos 4x\cos x}}$
On further simplification, we get,
\[ \Rightarrow LHS = \dfrac{{\sin 4x}}{{\cos 4x}}\]
We know that \[\tan A = \dfrac{{\sin A}}{{\cos A}}\]. So, we get,
\[ \Rightarrow LHS = \tan 4x\]
RHS is also equal to\[\tan 4x\]. So, we can write,
$LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar to the following trigonometric identities used in this problem.
\[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( { - x} \right) = - \sin \left( x \right)\]
\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $or multiples of $\pi $with the angle retains the ratio and adding $\dfrac{\pi }{2}$or odd multiples of $\dfrac{\pi }{2}$will change the ratio.While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

