
Prove the following:
\[\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x\]
Answer
609.6k+ views
Hint: In this question, consider the LHS and the formula for \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\] and \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. After that cancel the common terms to prove the desired result, that is to get LHS = RHS.
Complete step-by-step answer:
Here, we have to prove that
\[\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x\]
Let us consider the LHS of the expression given in the question
\[E=\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}\]
We know that, \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. By using this in the above expression, we get,
\[E=\dfrac{2\sin \left( \dfrac{7x+5x}{2} \right).\cos \left( \dfrac{7x-5x}{2} \right)+2\sin \left( \dfrac{9x+3x}{2} \right)\cos \left( \dfrac{9x-3x}{2} \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}\]
By simplifying the above expression, we get,
\[E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}\]
We know that \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. By using this in the above expression, we get,
\[E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{2\cos \left( \dfrac{7x+5x}{2} \right).\cos \left( \dfrac{7x-5x}{2} \right)+2\cos \left( \dfrac{9x+3x}{2} \right).\cos \left( \dfrac{9x-3x}{2} \right)}\]
By simplifying the above expression, we get,
\[E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{2\cos \left( 6x \right).\cos \left( x \right)+2\cos \left( 6x \right).\cos \left( 3x \right)}\]
By taking out 2 sin (6x) common from the numerator of the above expression, we get,
\[E=\dfrac{\left( 2\sin 6x \right)\left[ \cos x+\cos 3x \right]}{2\cos \left( 6x \right)\cos x+2\cos \left( 6x \right)\cos \left( 3x \right)}\]
By taking out 2 cos (6x) common from the denominator of the above expression, we get,
\[E=\dfrac{\left( 2\sin 6x \right)\left[ \cos x+\cos 3x \right]}{\left( 2\cos 6x \right)\left[ \cos x+\cos 3x \right]}\]
Now, by canceling the like terms of the above expression, we get,
\[E=\dfrac{\sin 6x}{\cos 6x}\]
We know that, \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta \]. By using this in the above expression, we get,
\[E=\tan 6x\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x\]
Note: In these types of questions, students often get confused between the formulas of sin C + sin D or sin C – sin D or cos C + cos D, etc. So, formulas for these expressions must be memorized properly. Also, students must try to club the terms such that we get, \[\dfrac{C+D}{2}\] and \[\dfrac{C-D}{2}\] as a whole number and not fractional values. In other words, try to take C and D such that (C + D) and (C – D) are even multiples.
Complete step-by-step answer:
Here, we have to prove that
\[\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x\]
Let us consider the LHS of the expression given in the question
\[E=\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}\]
We know that, \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. By using this in the above expression, we get,
\[E=\dfrac{2\sin \left( \dfrac{7x+5x}{2} \right).\cos \left( \dfrac{7x-5x}{2} \right)+2\sin \left( \dfrac{9x+3x}{2} \right)\cos \left( \dfrac{9x-3x}{2} \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}\]
By simplifying the above expression, we get,
\[E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}\]
We know that \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. By using this in the above expression, we get,
\[E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{2\cos \left( \dfrac{7x+5x}{2} \right).\cos \left( \dfrac{7x-5x}{2} \right)+2\cos \left( \dfrac{9x+3x}{2} \right).\cos \left( \dfrac{9x-3x}{2} \right)}\]
By simplifying the above expression, we get,
\[E=\dfrac{2\sin \left( 6x \right).\cos \left( x \right)+2\sin \left( 6x \right)\cos \left( 3x \right)}{2\cos \left( 6x \right).\cos \left( x \right)+2\cos \left( 6x \right).\cos \left( 3x \right)}\]
By taking out 2 sin (6x) common from the numerator of the above expression, we get,
\[E=\dfrac{\left( 2\sin 6x \right)\left[ \cos x+\cos 3x \right]}{2\cos \left( 6x \right)\cos x+2\cos \left( 6x \right)\cos \left( 3x \right)}\]
By taking out 2 cos (6x) common from the denominator of the above expression, we get,
\[E=\dfrac{\left( 2\sin 6x \right)\left[ \cos x+\cos 3x \right]}{\left( 2\cos 6x \right)\left[ \cos x+\cos 3x \right]}\]
Now, by canceling the like terms of the above expression, we get,
\[E=\dfrac{\sin 6x}{\cos 6x}\]
We know that, \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta \]. By using this in the above expression, we get,
\[E=\tan 6x\]
So, we get, LHS = RHS
Hence proved.
Therefore, we have proved that
\[\dfrac{\left( \sin 7x+\sin 5x \right)+\left( \sin 9x+\sin 3x \right)}{\left( \cos 7x+\cos 5x \right)+\left( \cos 9x+\cos 3x \right)}=\tan 6x\]
Note: In these types of questions, students often get confused between the formulas of sin C + sin D or sin C – sin D or cos C + cos D, etc. So, formulas for these expressions must be memorized properly. Also, students must try to club the terms such that we get, \[\dfrac{C+D}{2}\] and \[\dfrac{C-D}{2}\] as a whole number and not fractional values. In other words, try to take C and D such that (C + D) and (C – D) are even multiples.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

