
Prove the following:
$\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$
Answer
609.9k+ views
Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas like $\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ and $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ for simplifying the term on the left-hand side. After that, we will easily prove the desired result.
Complete step-by-step answer:
Given:
We have to prove the following equation:
$\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
$\begin{align}
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...................\left( 1 \right) \\
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)......................\left( 2 \right) \\
\end{align}$
Now, we will use the above two formulas to simplify the term on the left-hand side.
On the left-hand side, we have $\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}$ .
Now, we will use the formula from the equation (1) to write $\cos 9x-\cos 5x=-2\sin 7x\sin 2x$ in the term on the left-hand side. Then,
$\begin{align}
& \dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x} \\
& \Rightarrow \dfrac{-2\sin \left( \dfrac{9x+5x}{2} \right)\sin \left( \dfrac{9x-5x}{2} \right)}{\sin 17x-\sin 3x} \\
& \Rightarrow \dfrac{-2\sin 7x\sin 2x}{\sin 17x-\sin 3x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin 17x-\sin 3x=2\cos 10x\sin 7x$ in the above expression. Then,
$\begin{align}
& \dfrac{-2\sin 7x\sin 2x}{\sin 17x-\sin 3x} \\
& \Rightarrow \dfrac{-2\sin 7x\sin 2x}{2\cos \left( \dfrac{17x+3x}{2} \right)\sin \left( \dfrac{17x-3x}{2} \right)} \\
& \Rightarrow \dfrac{-2\sin 7x\sin 2x}{2\cos 10x\sin 7x} \\
& \Rightarrow \dfrac{-\sin 7x\sin 2x}{\sin 7x\cos 10x} \\
& \Rightarrow -\dfrac{\sin 2x}{\cos 10x} \\
\end{align}$
Now, from the above result, we conclude that the value of the expression $\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}$ will be equal to the value of the expression $-\dfrac{\sin 2x}{\cos 10x}$ . Then,
$\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, $\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like $\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ and $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.
Complete step-by-step answer:
Given:
We have to prove the following equation:
$\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
$\begin{align}
& \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...................\left( 1 \right) \\
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)......................\left( 2 \right) \\
\end{align}$
Now, we will use the above two formulas to simplify the term on the left-hand side.
On the left-hand side, we have $\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}$ .
Now, we will use the formula from the equation (1) to write $\cos 9x-\cos 5x=-2\sin 7x\sin 2x$ in the term on the left-hand side. Then,
$\begin{align}
& \dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x} \\
& \Rightarrow \dfrac{-2\sin \left( \dfrac{9x+5x}{2} \right)\sin \left( \dfrac{9x-5x}{2} \right)}{\sin 17x-\sin 3x} \\
& \Rightarrow \dfrac{-2\sin 7x\sin 2x}{\sin 17x-\sin 3x} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\sin 17x-\sin 3x=2\cos 10x\sin 7x$ in the above expression. Then,
$\begin{align}
& \dfrac{-2\sin 7x\sin 2x}{\sin 17x-\sin 3x} \\
& \Rightarrow \dfrac{-2\sin 7x\sin 2x}{2\cos \left( \dfrac{17x+3x}{2} \right)\sin \left( \dfrac{17x-3x}{2} \right)} \\
& \Rightarrow \dfrac{-2\sin 7x\sin 2x}{2\cos 10x\sin 7x} \\
& \Rightarrow \dfrac{-\sin 7x\sin 2x}{\sin 7x\cos 10x} \\
& \Rightarrow -\dfrac{\sin 2x}{\cos 10x} \\
\end{align}$
Now, from the above result, we conclude that the value of the expression $\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}$ will be equal to the value of the expression $-\dfrac{\sin 2x}{\cos 10x}$ . Then,
$\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, $\dfrac{\cos 9x-\cos 5x}{\sin 17x-\sin 3x}=-\dfrac{\sin 2x}{\cos 10x}$ .
Hence, proved.
Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like $\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ and $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$ correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

