
Prove the following:
$\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x$
Answer
607.2k+ views
Hint:To prove the above expression, solve the L.H.S of the expression. In the numerator of the L.H.S, use the identity for $\cos C+\cos D$ in $\cos 4x+\cos 2x$ and in the denominator of L.H.S, use the identity $\sin C+\sin D$ in $\sin 4x+\sin 2x$. Then simplify the expression.
Complete step-by-step answer:
The expression given in the question is:
$\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x$
Now, we are going to simplify the L.H.S of the above equation.
$\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}$
The numerator of the above expression is in the form of $\cos C+\cos D$ so we can apply the identity of $\cos C+\cos D$ in $\cos 4x+\cos 2x$.
$\begin{align}
& \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right) \\
& \Rightarrow \cos 4x+\cos 2x=2\cos \left( 3x \right)\cos \left( x \right) \\
\end{align}$
If you can see the denominator of the expression, $\sin 4x+\sin 2x$ is in the form of $\sin C+\sin D$ so we can apply the identity of $\sin C+\sin D$ in the expression $\sin 4x+\sin 2x$.
$\begin{align}
& \sin 4x+\sin 2x=2\sin \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right) \\
& \Rightarrow \sin 4x+\sin 2x=2\sin \left( 3x \right)\cos \left( x \right) \\
\end{align}$
Substituting the value of expressions $\sin 4x+\sin 2x\And \cos 4x+\cos 2x$ in the L.H.S expression given in the question we get,
$\begin{align}
& \dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x} \\
& =\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\
& =\dfrac{\cos 3x(2\cos x+1)}{\sin 3x(2\cos x+1)} \\
\end{align}$
In the above expression $2\cos x+1$ will be cancelled out from the numerator and the denominator.
$\begin{align}
& \dfrac{\cos 3x}{\sin 3x} \\
& =\cot 3x \\
\end{align}$
From the above calculation, the result of L.H.S in the given expression has come out to be $\cot 3x$ which is equal to R.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given expression.
Note: You might be wondering why we have applied $\cos C+\cos D$ for $\cos 4x+\cos 2x$ in the numerator and $\sin C+\sin D$ for $\sin 4x+\sin 2x$ in the denominator because when we take$\cos 4x+\cos 2x$ then after applying the identity then expression converts to $\cos 3x$. Similarly, in the denominator we have got $\sin 3x$ and the R.H.S of the given expression contains $\cot 3x$. So, to equate both the sides, we have selectively taken the angles $4x$ and $2x$ of cosine and sine in the numerator and denominator respectively.
Complete step-by-step answer:
The expression given in the question is:
$\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x$
Now, we are going to simplify the L.H.S of the above equation.
$\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}$
The numerator of the above expression is in the form of $\cos C+\cos D$ so we can apply the identity of $\cos C+\cos D$ in $\cos 4x+\cos 2x$.
$\begin{align}
& \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right) \\
& \Rightarrow \cos 4x+\cos 2x=2\cos \left( 3x \right)\cos \left( x \right) \\
\end{align}$
If you can see the denominator of the expression, $\sin 4x+\sin 2x$ is in the form of $\sin C+\sin D$ so we can apply the identity of $\sin C+\sin D$ in the expression $\sin 4x+\sin 2x$.
$\begin{align}
& \sin 4x+\sin 2x=2\sin \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right) \\
& \Rightarrow \sin 4x+\sin 2x=2\sin \left( 3x \right)\cos \left( x \right) \\
\end{align}$
Substituting the value of expressions $\sin 4x+\sin 2x\And \cos 4x+\cos 2x$ in the L.H.S expression given in the question we get,
$\begin{align}
& \dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x} \\
& =\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\
& =\dfrac{\cos 3x(2\cos x+1)}{\sin 3x(2\cos x+1)} \\
\end{align}$
In the above expression $2\cos x+1$ will be cancelled out from the numerator and the denominator.
$\begin{align}
& \dfrac{\cos 3x}{\sin 3x} \\
& =\cot 3x \\
\end{align}$
From the above calculation, the result of L.H.S in the given expression has come out to be $\cot 3x$ which is equal to R.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given expression.
Note: You might be wondering why we have applied $\cos C+\cos D$ for $\cos 4x+\cos 2x$ in the numerator and $\sin C+\sin D$ for $\sin 4x+\sin 2x$ in the denominator because when we take$\cos 4x+\cos 2x$ then after applying the identity then expression converts to $\cos 3x$. Similarly, in the denominator we have got $\sin 3x$ and the R.H.S of the given expression contains $\cot 3x$. So, to equate both the sides, we have selectively taken the angles $4x$ and $2x$ of cosine and sine in the numerator and denominator respectively.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

