
Prove the following:
\[\cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right)\]
Answer
511.2k+ views
Hint: We can take the LHS of the given equation and simplify it using the trigonometric identity\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\].We can also take the RHS and then use the identity \[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\] to simplify it. On doing further calculations, we will obtain a simple form of LHS and RHS. We can prove the given equation by comparing LHS and RHS and prove they are equal.
Complete step by step Answer:
We need to prove that\[\cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right)\]
Let us look at the LHS,
$LHS = \cot 4x\left( {\sin 5x + \sin 3x} \right)$
We can add the terms inside the bracket of the LHS.
We know that \[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {4x} \right)\cos \left( x \right)\]
We can substitute it in the LHS.
\[ \Rightarrow LHS = \cot 4x\left( {2\sin 4x\cos x} \right)\]
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$, so the LHS becomes,
\[ \Rightarrow LHS = \dfrac{{\cos 4x}}{{\sin 4x}}\left( {2\sin 4x\cos x} \right)\]
On simplification, we get,
\[ \Rightarrow LHS = 2\cos 4x\cos x\] … (1)
Now we can take the RHS,
\[RHS = \cot x\left( {\sin 5x - \sin 3x} \right)\]
We know that, \[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( {5x} \right) - \sin \left( {3x} \right) = 2\cos \left( {\dfrac{{5x + 3x}}{2}} \right)\sin \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( {5x} \right) - \sin \left( {3x} \right) = 2\cos \left( {4x} \right)\sin \left( x \right)\]
We can substitute it in the RHS.
\[ \Rightarrow RHS = \cot x\left( {2\cos 4x\sin x} \right)\]
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$, so the RHS becomes,
\[ \Rightarrow RHS = \dfrac{{\cos x}}{{\sin x}}\left( {2\cos 4x\sin x} \right)\]
On simplification, we get,
\[ \Rightarrow RHS = 2\cos 4x\cos x\] … (2)
On comparing (1) and (2), we can conclude that both LHS and RHS are equal,
$ \Rightarrow LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar to the following trigonometric identities used in this problem.
\[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( { - x} \right) = - \sin \left( x \right)\]
\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $or multiples of $\pi $with the angle retains the ratio and adding $\dfrac{\pi }{2}$or odd multiples of $\dfrac{\pi }{2}$will change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The following figure gives us an idea about the signs of different trigonometric functions. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.
Complete step by step Answer:
We need to prove that\[\cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right)\]
Let us look at the LHS,
$LHS = \cot 4x\left( {\sin 5x + \sin 3x} \right)$
We can add the terms inside the bracket of the LHS.
We know that \[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( {5x} \right) + \sin \left( {3x} \right) = 2\sin \left( {4x} \right)\cos \left( x \right)\]
We can substitute it in the LHS.
\[ \Rightarrow LHS = \cot 4x\left( {2\sin 4x\cos x} \right)\]
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$, so the LHS becomes,
\[ \Rightarrow LHS = \dfrac{{\cos 4x}}{{\sin 4x}}\left( {2\sin 4x\cos x} \right)\]
On simplification, we get,
\[ \Rightarrow LHS = 2\cos 4x\cos x\] … (1)
Now we can take the RHS,
\[RHS = \cot x\left( {\sin 5x - \sin 3x} \right)\]
We know that, \[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
We can substitute the values,
\[ \Rightarrow \sin \left( {5x} \right) - \sin \left( {3x} \right) = 2\cos \left( {\dfrac{{5x + 3x}}{2}} \right)\sin \left( {\dfrac{{5x - 3x}}{2}} \right)\]
On simplification, we get,
\[ \Rightarrow \sin \left( {5x} \right) - \sin \left( {3x} \right) = 2\cos \left( {4x} \right)\sin \left( x \right)\]
We can substitute it in the RHS.
\[ \Rightarrow RHS = \cot x\left( {2\cos 4x\sin x} \right)\]
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$, so the RHS becomes,
\[ \Rightarrow RHS = \dfrac{{\cos x}}{{\sin x}}\left( {2\cos 4x\sin x} \right)\]
On simplification, we get,
\[ \Rightarrow RHS = 2\cos 4x\cos x\] … (2)
On comparing (1) and (2), we can conclude that both LHS and RHS are equal,
$ \Rightarrow LHS = RHS$.
Hence the equation is proved.
Note: We must be familiar to the following trigonometric identities used in this problem.
\[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\cos \left( A \right) - \cos \left( B \right) = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) + \sin \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( A \right) - \sin \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)\]
\[\sin \left( { - x} \right) = - \sin \left( x \right)\]
\[\cos \left( { - x} \right) = \cos \left( x \right)\]
We must know the values of trigonometric functions at common angles. Adding $\pi $or multiples of $\pi $with the angle retains the ratio and adding $\dfrac{\pi }{2}$or odd multiples of $\dfrac{\pi }{2}$will change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The following figure gives us an idea about the signs of different trigonometric functions. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.

Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
