
Prove the following :
\[cos\left( A – B \right) = cosA. cosB\ + \ sinA. sinB\] if \[A = B = 60^{o}\]
Answer
497.4k+ views
Hint: In this question, we need to prove that \[cos\left( A – B \right) = cosA. cosB\ + \ sinA. sinB\] and also given a condition that if \[A = B = 60^{o}\] . First we can consider and solve the left part of the given expression and then we can solve the right part of the expression using the given condition. By using the trigonometric identities and functions, we can easily prove the given expression.
Complete step by step answer:
To prove,
\[cos\left( A – B \right) = cosA.cosB\ + \ sinA.sinB\]
Condition : if \[A = B = 60^o\]
That is \[A = 60^o\] and \[B = 60^o\]
First we can consider the left part,
⇒ \[cos(A – B)\ \]
By substituting the values of \[A\] and \[B\],
We get,
⇒ \[cos(60^o – 60^o)\]
By subtracting,
We get,
⇒ \[cos0^o\]
We know that \[cos0^{o} = 1\]
Thus we get \[cos(A – B)\ = 1\] ••• (1)
Now we can consider the right part of the expression.
⇒ \[cosA. cosB\ + \ sinA. sinB\]
By substituting the values of \[A\] and \[B\],
We get,
⇒ \[\cos\left( 60^o \right) \times \cos\left( 60^o \right) + \sin\left( 60^o \right) \times sin(60^o)\]
We know that,
\[cos60^o = \dfrac{1}{2}\]
\[sin60^o = \dfrac{\sqrt{3}}{2}\]
By substituting the values,
We get,
⇒ \[\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2} \right) + \left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{\sqrt{3}}{2} \right)\ \]
By multiplying,
We get,
⇒ \[\left( \dfrac{1}{4} \right) + \left( \dfrac{3}{4} \right)\]
By adding ,
We get,
⇒ \[\dfrac{4}{4}\]
By simplifying,
We get,
⇒ \[cosA. cosB\ + \ sinA.sinB = 1\] ••• (2)
By equating (1) and (2) ,
We get
\[cos\left( A – B \right) = cosA.cosB\ + \ sinA.sinB\]
⇒ \[1 = 1\]
Thus we have proved.
\[cos\left( A – B \right) = cosA.cosB\ + \ sinA.sinB\]
Note:
The concept used to prove the given problem is trigonometric identities and ratios. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution method with the use of trigonometric functions.
Complete step by step answer:
To prove,
\[cos\left( A – B \right) = cosA.cosB\ + \ sinA.sinB\]
Condition : if \[A = B = 60^o\]
That is \[A = 60^o\] and \[B = 60^o\]
First we can consider the left part,
⇒ \[cos(A – B)\ \]
By substituting the values of \[A\] and \[B\],
We get,
⇒ \[cos(60^o – 60^o)\]
By subtracting,
We get,
⇒ \[cos0^o\]
We know that \[cos0^{o} = 1\]
Thus we get \[cos(A – B)\ = 1\] ••• (1)
Now we can consider the right part of the expression.
⇒ \[cosA. cosB\ + \ sinA. sinB\]
By substituting the values of \[A\] and \[B\],
We get,
⇒ \[\cos\left( 60^o \right) \times \cos\left( 60^o \right) + \sin\left( 60^o \right) \times sin(60^o)\]
We know that,
\[cos60^o = \dfrac{1}{2}\]
\[sin60^o = \dfrac{\sqrt{3}}{2}\]
By substituting the values,
We get,
⇒ \[\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2} \right) + \left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{\sqrt{3}}{2} \right)\ \]
By multiplying,
We get,
⇒ \[\left( \dfrac{1}{4} \right) + \left( \dfrac{3}{4} \right)\]
By adding ,
We get,
⇒ \[\dfrac{4}{4}\]
By simplifying,
We get,
⇒ \[cosA. cosB\ + \ sinA.sinB = 1\] ••• (2)
By equating (1) and (2) ,
We get
\[cos\left( A – B \right) = cosA.cosB\ + \ sinA.sinB\]
⇒ \[1 = 1\]
Thus we have proved.
\[cos\left( A – B \right) = cosA.cosB\ + \ sinA.sinB\]
Note:
The concept used to prove the given problem is trigonometric identities and ratios. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution method with the use of trigonometric functions.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

