
Prove the following:
(a) ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$
(b) $\sinh 2x=2\sinh x\cosh x$
(c) $\cosh 2x={{\cosh }^{2}}x+{{\sinh }^{2}}x$
(d) ${{\tanh }^{2}}x=1-{{\operatorname{sech}}^{2}}x$
Answer
587.7k+ views
Hint: To prove these identities, we will use the definition of $\sinh x$, $\cosh x$and $\tanh x$. We know that $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$ , $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$ and $\tanh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}$. We will substitute these values in one side of the equation and simplify it to obtain the other side of that equation.
Complete step-by-step solution:
(a) ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$
We will consider the LHS of this equation,
LHS $={{\cosh }^{2}}x-{{\sinh }^{2}}x$
\[\begin{align}
& ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}-\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right) \\
& =\dfrac{{{e}^{2x}}+2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4}-\dfrac{{{e}^{2x}}-2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4} \\
& =\dfrac{{{e}^{2x}}+2+{{e}^{-2x}}-{{e}^{2x}}+2-{{e}^{-2x}}}{4} \\
& =\dfrac{4}{4} \\
& =1 \\
\end{align}\]
$=$ RHS
Hence, proved.
(b) $\sinh 2x=2\sinh x\cosh x$
We will consider the RHS of this equation,
RHS $=2\sinh x\cosh x$
\[\begin{align}
& =2\cdot \left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)\cdot \left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right) \\
& =\dfrac{({{e}^{x}}-{{e}^{-x}})\cdot ({{e}^{x}}+{{e}^{-x}})}{2} \\
& =\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{2} \\
& =\sinh 2x \\
\end{align}\]
$=$ LHS
Hence, proved.
(c) $\cosh 2x={{\cosh }^{2}}x+{{\sinh }^{2}}x$
We will consider the RHS of this equation,
RHS $={{\cosh }^{2}}x+{{\sinh }^{2}}x$
Substituting and expanding the values, we get RHS as,
\[\begin{align}
& ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}+{{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)}^{2}} \\
& =\dfrac{{{e}^{2x}}+2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4}+\dfrac{{{e}^{2x}}-2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4} \\
& =\dfrac{{{e}^{2x}}+2+{{e}^{-2x}}+{{e}^{2x}}-2+{{e}^{-2x}}}{4} \\
& =\dfrac{2{{e}^{2x}}+2{{e}^{-2x}}}{4} \\
& =\dfrac{{{e}^{2x}}+{{e}^{-2x}}}{2} \\
& =\cosh 2x \\
\end{align}\]
$=$ LHS
Hence, proved.
(d) ) ${{\tanh }^{2}}x=1-{{\operatorname{sech}}^{2}}x$
We know that $\operatorname{sech}x=\dfrac{1}{\cosh x}$. Now, we will consider the RHS of the given equation,
RHS $=1-{{\operatorname{sech}}^{2}}x$ \[=1-{{\left( \dfrac{1}{\cosh x} \right)}^{2}}\]
Substituting and expanding the values, we get
\[\begin{align}
& =1-{{\left( \dfrac{1}{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)} \right)}^{2}} \\
& =1-{{\left( \dfrac{2}{{{e}^{x}}+{{e}^{-x}}} \right)}^{2}} \\
& =1-\dfrac{4}{{{e}^{2x}}+2+{{e}^{-2x}}} \\
& =\dfrac{{{e}^{2x}}+2+{{e}^{-2x}}-4}{{{e}^{2x}}+2+{{e}^{-2x}}} \\
& =\dfrac{{{e}^{2x}}-2+{{e}^{-2x}}}{{{e}^{2x}}+2+{{e}^{-2x}}} \\
& =\dfrac{{{({{e}^{x}}-{{e}^{-x}})}^{2}}}{{{({{e}^{x}}+{{e}^{-x}})}^{2}}} \\
& ={{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right)}^{2}} \\
& ={{\tanh }^{2}}x \\
\end{align}\]
$=$ LHS
Hence, proved.
Note: The calculations in this question involve exponentials. We should keep in mind the identities of indices while expanding the squares of exponential functions. It is very important to keep the signs of all terms in check, otherwise, we will not be able to prove the identities. It is crucial to know when to switch between definitions while simplifying equations involving trigonometric functions.
Complete step-by-step solution:
(a) ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$
We will consider the LHS of this equation,
LHS $={{\cosh }^{2}}x-{{\sinh }^{2}}x$
\[\begin{align}
& ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}-\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right) \\
& =\dfrac{{{e}^{2x}}+2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4}-\dfrac{{{e}^{2x}}-2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4} \\
& =\dfrac{{{e}^{2x}}+2+{{e}^{-2x}}-{{e}^{2x}}+2-{{e}^{-2x}}}{4} \\
& =\dfrac{4}{4} \\
& =1 \\
\end{align}\]
$=$ RHS
Hence, proved.
(b) $\sinh 2x=2\sinh x\cosh x$
We will consider the RHS of this equation,
RHS $=2\sinh x\cosh x$
\[\begin{align}
& =2\cdot \left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)\cdot \left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right) \\
& =\dfrac{({{e}^{x}}-{{e}^{-x}})\cdot ({{e}^{x}}+{{e}^{-x}})}{2} \\
& =\dfrac{{{e}^{2x}}-{{e}^{-2x}}}{2} \\
& =\sinh 2x \\
\end{align}\]
$=$ LHS
Hence, proved.
(c) $\cosh 2x={{\cosh }^{2}}x+{{\sinh }^{2}}x$
We will consider the RHS of this equation,
RHS $={{\cosh }^{2}}x+{{\sinh }^{2}}x$
Substituting and expanding the values, we get RHS as,
\[\begin{align}
& ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}+{{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)}^{2}} \\
& =\dfrac{{{e}^{2x}}+2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4}+\dfrac{{{e}^{2x}}-2{{e}^{x}}\cdot {{e}^{-x}}+{{e}^{-2x}}}{4} \\
& =\dfrac{{{e}^{2x}}+2+{{e}^{-2x}}+{{e}^{2x}}-2+{{e}^{-2x}}}{4} \\
& =\dfrac{2{{e}^{2x}}+2{{e}^{-2x}}}{4} \\
& =\dfrac{{{e}^{2x}}+{{e}^{-2x}}}{2} \\
& =\cosh 2x \\
\end{align}\]
$=$ LHS
Hence, proved.
(d) ) ${{\tanh }^{2}}x=1-{{\operatorname{sech}}^{2}}x$
We know that $\operatorname{sech}x=\dfrac{1}{\cosh x}$. Now, we will consider the RHS of the given equation,
RHS $=1-{{\operatorname{sech}}^{2}}x$ \[=1-{{\left( \dfrac{1}{\cosh x} \right)}^{2}}\]
Substituting and expanding the values, we get
\[\begin{align}
& =1-{{\left( \dfrac{1}{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)} \right)}^{2}} \\
& =1-{{\left( \dfrac{2}{{{e}^{x}}+{{e}^{-x}}} \right)}^{2}} \\
& =1-\dfrac{4}{{{e}^{2x}}+2+{{e}^{-2x}}} \\
& =\dfrac{{{e}^{2x}}+2+{{e}^{-2x}}-4}{{{e}^{2x}}+2+{{e}^{-2x}}} \\
& =\dfrac{{{e}^{2x}}-2+{{e}^{-2x}}}{{{e}^{2x}}+2+{{e}^{-2x}}} \\
& =\dfrac{{{({{e}^{x}}-{{e}^{-x}})}^{2}}}{{{({{e}^{x}}+{{e}^{-x}})}^{2}}} \\
& ={{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right)}^{2}} \\
& ={{\tanh }^{2}}x \\
\end{align}\]
$=$ LHS
Hence, proved.
Note: The calculations in this question involve exponentials. We should keep in mind the identities of indices while expanding the squares of exponential functions. It is very important to keep the signs of all terms in check, otherwise, we will not be able to prove the identities. It is crucial to know when to switch between definitions while simplifying equations involving trigonometric functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

