
Prove that \[\vec{i}\times \left( \vec{a}\times \hat{i} \right)+\hat{j}\left( \vec{a}\times \hat{j} \right)+\hat{k}\times \left( \vec{a}\times \hat{k} \right)=2\vec{a}\]
Answer
585k+ views
Hint: First use the property of the orthogonal unit vectors to find $\vec{i}\cdot \vec{i}=\vec{j}\cdot \vec{j}=\vec{k}\cdot \vec{k}=1$. Use the conversion formula from cross product to dot product $\vec{a}\times \left( \vec{b}\times \vec{c} \right)=\vec{b}\left( \vec{a}\cdot \vec{c} \right)-\vec{c}\left( \vec{a}\cdot \vec{b} \right)$ to convert the vector triple products at the left hand side of the statement. Use the fact that a vector is sum of component vectors along the direction of unit vectors $\left( \vec{a}={{a}_{1}}\vec{i}+{{a}_{2}}\vec{j}+{{a}_{3}}\vec{k} \right)$.\[\]
Complete step-by-step solution:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and $\vec{b}$. The cross product between two vectors is denoted as $\vec{a}\times \vec{b}$ and is given by $\vec{a}\times \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\sin \theta \hat{n}$ where $\hat{n}$ is a vector perpendicular to both $\vec{a}$ and $\vec{b}$ and in a direction according to right hand rule.
We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors \[\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1\]. The vectors just like their axes are perpendicular to each other which means any angle among $\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat i \cdot \hat i = \hat j \cdot \hat j = \hat k \cdot \hat k = 1 \cdot 1 \cdot \cos {0^ \circ } = 1$
We know the formula to convert cross product of three vectors to dot product $\vec{a}\times \left( \vec{b}\times \vec{c} \right)=\vec{b}\left( \vec{a}\cdot \vec{c} \right)-\vec{c}\left( \vec{a}\cdot \vec{b} \right)$ \[\]
We are asked to prove the statement
\[\vec{i}\times \left( \vec{a}\times \hat{i} \right)+\hat{j}\left( \vec{a}\times \hat{j} \right)+\hat{k}\times \left( \vec{a}\times \hat{k} \right)=2\vec{a}\]
Let us use the formula and covert into dot products
\[\begin{align}
& \vec{i}\times \left( \vec{a}\times \hat{i} \right)+\hat{j}\left( \vec{a}\times \hat{j} \right)+\hat{k}\times \left( \vec{a}\times \hat{k} \right)= \\
& =\left( \hat{i}\cdot \hat{i} \right)\vec{a}-\left( \hat{i}\cdot \vec{a} \right)\hat{i}+\left( \hat{j}\cdot \hat{j} \right)\vec{a}-\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\left( \hat{k}\cdot \hat{k} \right)\vec{a}-\left( \hat{k}\cdot \vec{a} \right)\hat{k} \\
& =\vec{a}-\left( \hat{i}\cdot \vec{a} \right)\hat{i}+\vec{a}-\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\vec{a}-\left( \hat{k}\cdot \vec{a} \right)\hat{k} \\
& =3\vec{a}-\left\{ \left( \hat{i}\cdot \vec{a} \right)\hat{i}+\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\left( \hat{k}\cdot \vec{a} \right)\hat{k} \right\} \\
\end{align}\]
We can express any vector as a combination of orthogonal unit vectors. Let us assume that ${a_1}\hat i + {a_2}\hat j + {a_3}\hat k$ where \[\left| {\vec{a}} \right|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}\] and ${{a}_{1}},{{a}_{2}},{{a}_{3}}$ are the magnitude of the vector $\vec{a}$ along the direction of unit orthogonal vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$. So we can express $\hat{i}\cdot \vec{a}=a\cos \alpha ={{a}_{1}},\hat{j}\cdot \vec{a}=a\cos \beta ={{a}_{2}},\hat{k}\cdot \vec{a}=a\cos \gamma ={{a}_{3}}$ where $\alpha ,\beta ,\gamma $ are the angles the vector $\vec{a}$ makes with $\hat{i}$,$\hat{j}$ and $\hat{k}$.
\[\begin{align}
& =3\vec{a}-\left\{ \left( \hat{i}\cdot \vec{a} \right)\hat{i}+\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\left( \hat{k}\cdot \vec{a} \right)\hat{k} \right\} \\
& =3\vec{a}-\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) \\
& =3\vec{a}-\vec{a}=2\vec{a} \\
\end{align}\]
Which is right hand side of the proof. Hence proved.\[\]
Note: The vector triple products of the forms like $\vec{a}\times \left( \vec{b}\times \vec{c} \right)$ are also called vector volume. The formula $\vec{a}\times \left( \vec{b}\times \vec{c} \right)=\vec{b}\left( \vec{a}\cdot \vec{c} \right)-\vec{c}\left( \vec{a}\cdot \vec{b} \right)$ is also called Lagrange’s formula or expansion of vector triple product. We note another useful identity called Jacobi’s identity $\left( \vec{a}\times \vec{b} \right)\times \vec{c}=\vec{a}\times \left( \vec{b}\times \vec{c} \right)-\vec{b}\times \left( \vec{a}\times \vec{c} \right).$
Complete step-by-step solution:
We know that the dot product of two vectors $\vec{a}$ and $\vec{b}$ is denoted as $\vec{a}\cdot \vec{b}$ and is given by $\vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta $ where $\theta $ is the angle between the vectors $\vec{a}$ and $\vec{b}$. The cross product between two vectors is denoted as $\vec{a}\times \vec{b}$ and is given by $\vec{a}\times \vec{b}=\left| {\vec{a}} \right|\left| {\vec{b}} \right|\sin \theta \hat{n}$ where $\hat{n}$ is a vector perpendicular to both $\vec{a}$ and $\vec{b}$ and in a direction according to right hand rule.
We also know that $\hat{i}$,$\hat{j}$ and $\hat{k}$ are unit vectors(vectors with magnitude 1) along $x,y$ and $z$ axes respectively. So the magnitude of these vectors \[\left| {\hat{i}} \right|=\left| {\hat{j}} \right|=\left| {\hat{k}} \right|=1\]. The vectors just like their axes are perpendicular to each other which means any angle among $\hat{i}$,$\hat{j}$ and $\hat{k}$is ${{90}^{\circ }}.$ So $\hat i \cdot \hat i = \hat j \cdot \hat j = \hat k \cdot \hat k = 1 \cdot 1 \cdot \cos {0^ \circ } = 1$
We know the formula to convert cross product of three vectors to dot product $\vec{a}\times \left( \vec{b}\times \vec{c} \right)=\vec{b}\left( \vec{a}\cdot \vec{c} \right)-\vec{c}\left( \vec{a}\cdot \vec{b} \right)$ \[\]
We are asked to prove the statement
\[\vec{i}\times \left( \vec{a}\times \hat{i} \right)+\hat{j}\left( \vec{a}\times \hat{j} \right)+\hat{k}\times \left( \vec{a}\times \hat{k} \right)=2\vec{a}\]
Let us use the formula and covert into dot products
\[\begin{align}
& \vec{i}\times \left( \vec{a}\times \hat{i} \right)+\hat{j}\left( \vec{a}\times \hat{j} \right)+\hat{k}\times \left( \vec{a}\times \hat{k} \right)= \\
& =\left( \hat{i}\cdot \hat{i} \right)\vec{a}-\left( \hat{i}\cdot \vec{a} \right)\hat{i}+\left( \hat{j}\cdot \hat{j} \right)\vec{a}-\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\left( \hat{k}\cdot \hat{k} \right)\vec{a}-\left( \hat{k}\cdot \vec{a} \right)\hat{k} \\
& =\vec{a}-\left( \hat{i}\cdot \vec{a} \right)\hat{i}+\vec{a}-\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\vec{a}-\left( \hat{k}\cdot \vec{a} \right)\hat{k} \\
& =3\vec{a}-\left\{ \left( \hat{i}\cdot \vec{a} \right)\hat{i}+\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\left( \hat{k}\cdot \vec{a} \right)\hat{k} \right\} \\
\end{align}\]
We can express any vector as a combination of orthogonal unit vectors. Let us assume that ${a_1}\hat i + {a_2}\hat j + {a_3}\hat k$ where \[\left| {\vec{a}} \right|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}\] and ${{a}_{1}},{{a}_{2}},{{a}_{3}}$ are the magnitude of the vector $\vec{a}$ along the direction of unit orthogonal vectors $\hat{i}$,$\hat{j}$ and $\hat{k}$. So we can express $\hat{i}\cdot \vec{a}=a\cos \alpha ={{a}_{1}},\hat{j}\cdot \vec{a}=a\cos \beta ={{a}_{2}},\hat{k}\cdot \vec{a}=a\cos \gamma ={{a}_{3}}$ where $\alpha ,\beta ,\gamma $ are the angles the vector $\vec{a}$ makes with $\hat{i}$,$\hat{j}$ and $\hat{k}$.
\[\begin{align}
& =3\vec{a}-\left\{ \left( \hat{i}\cdot \vec{a} \right)\hat{i}+\left( \hat{j}\cdot \vec{a} \right)\hat{j}+\left( \hat{k}\cdot \vec{a} \right)\hat{k} \right\} \\
& =3\vec{a}-\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right) \\
& =3\vec{a}-\vec{a}=2\vec{a} \\
\end{align}\]
Which is right hand side of the proof. Hence proved.\[\]
Note: The vector triple products of the forms like $\vec{a}\times \left( \vec{b}\times \vec{c} \right)$ are also called vector volume. The formula $\vec{a}\times \left( \vec{b}\times \vec{c} \right)=\vec{b}\left( \vec{a}\cdot \vec{c} \right)-\vec{c}\left( \vec{a}\cdot \vec{b} \right)$ is also called Lagrange’s formula or expansion of vector triple product. We note another useful identity called Jacobi’s identity $\left( \vec{a}\times \vec{b} \right)\times \vec{c}=\vec{a}\times \left( \vec{b}\times \vec{c} \right)-\vec{b}\times \left( \vec{a}\times \vec{c} \right).$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

