
Prove that there is no term involving ${{x}^{2}}$ in the expression of ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$, where $x\ne 0$.
Answer
615.6k+ views
Hint: In this question, we will use binomial theorem to expand the given expression and then check powers of $x$ in all the terms involved in expansion and check if ${{x}^{2}}$ is present or not.
Complete step-by-step answer:
Firstly, we will use binomial theorem to write expanded form of ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$.
Binomial theorem states that,
For any positive integer $n$, the ${{n}^{th}}$ power of the sum of two real numbers $a$ and $b$ may be expressed as the sum of $n+1$ terms as given below:
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$
$\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}$.
Where, ${}^{n}{{C}_{r}}=\dfrac{\left| \!{\underline {\,
n \,}} \right. }{\left| \!{\underline {\,
r \,}} \right. \times \left| \!{\underline {\,
n-r \,}} \right. }$.
Here, using binomial theorem in ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$, we have,
$a=2{{x}^{2}},\,b=-\dfrac{3}{x}\,\text{and}\,n=11$
Therefore,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}{{\left( 2{{x}^{2}} \right)}^{11-r}}{{\left( -\dfrac{3}{x} \right)}^{r}}}$
Distributing power in numerator and denominator of $\dfrac{-3}{x}$ and multiplying powers of $2{{x}^{2}}$, we get,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2{{x}^{2\left( 11-r \right)}}\left( -\dfrac{{{3}^{r}}}{{{x}^{r}}} \right)}$
Applying distributive law in power of $x$, we get,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2{{x}^{22-2r}}\left( -\dfrac{{{3}^{r}}}{{{x}^{r}}} \right)}$
Separating $x$, we get,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right)\dfrac{{{x}^{22-2r}}}{{{x}^{r}}}}$
Writing all exponential powers of $x$ in numerator, we get,
$\begin{align}
& {{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right){{x}^{22-2r-r}}} \\
& =\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right){{x}^{22-3r}}} \\
\end{align}$
Here, the value of $r$ is an integer, which lies from 0 to 11.
Therefore, from above equation, we can say that, terms of $x$ in the expansion of ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$ are:
${{x}^{22-3\times 0}},\,{{x}^{22-3\times 1}},\,{{x}^{22-3\times 2}},\,{{x}^{22-3\times 3}},\,{{x}^{22-3\times 4}},\,{{x}^{22-3\times 5}},\,{{x}^{22-3\times 6}},\,{{x}^{22-3\times 7}},\,{{x}^{22-3\times 8}},{{x}^{22-3\times 9}},\,{{x}^{22-3\times 10}}$ and ${{x}^{22-3\times 11}}$
$={{x}^{22-0}},\,{{x}^{22-3}},\,{{x}^{22-6}},\,{{x}^{22-9}},\,{{x}^{22-12}},\,{{x}^{22-15}},\,{{x}^{22-18}},\,{{x}^{22-21}},\,{{x}^{22-24}},{{x}^{22-27}},\,{{x}^{22-30}}$ and ${{x}^{22-33}}$
$={{x}^{22}},\,{{x}^{19}},\,{{x}^{16}},\,{{x}^{13}},\,{{x}^{10}},\,{{x}^{7}},\,{{x}^{4}},\,{{x}^{1}},\,{{x}^{-2}},{{x}^{-5}},\,{{x}^{-8}}$and ${{x}^{-11}}$
Hence, we can see that, there is no term involving ${{x}^{2}}$ in expansion of expression ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$.
Hence proved.
Note: This question can also be done by actually expanding the whole expression with all its coefficients. But it must be noted that we only need to check if ${{x}^{2}}$ is present or not and don’t need its coefficient. So, full expansion is not needed.
Complete step-by-step answer:
Firstly, we will use binomial theorem to write expanded form of ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$.
Binomial theorem states that,
For any positive integer $n$, the ${{n}^{th}}$ power of the sum of two real numbers $a$ and $b$ may be expressed as the sum of $n+1$ terms as given below:
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$
$\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}$.
Where, ${}^{n}{{C}_{r}}=\dfrac{\left| \!{\underline {\,
n \,}} \right. }{\left| \!{\underline {\,
r \,}} \right. \times \left| \!{\underline {\,
n-r \,}} \right. }$.
Here, using binomial theorem in ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$, we have,
$a=2{{x}^{2}},\,b=-\dfrac{3}{x}\,\text{and}\,n=11$
Therefore,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}{{\left( 2{{x}^{2}} \right)}^{11-r}}{{\left( -\dfrac{3}{x} \right)}^{r}}}$
Distributing power in numerator and denominator of $\dfrac{-3}{x}$ and multiplying powers of $2{{x}^{2}}$, we get,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2{{x}^{2\left( 11-r \right)}}\left( -\dfrac{{{3}^{r}}}{{{x}^{r}}} \right)}$
Applying distributive law in power of $x$, we get,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2{{x}^{22-2r}}\left( -\dfrac{{{3}^{r}}}{{{x}^{r}}} \right)}$
Separating $x$, we get,
${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right)\dfrac{{{x}^{22-2r}}}{{{x}^{r}}}}$
Writing all exponential powers of $x$ in numerator, we get,
$\begin{align}
& {{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}=\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right){{x}^{22-2r-r}}} \\
& =\sum\limits_{r=0}^{11}{{}^{11}{{C}_{r}}2\left( -{{3}^{r}} \right){{x}^{22-3r}}} \\
\end{align}$
Here, the value of $r$ is an integer, which lies from 0 to 11.
Therefore, from above equation, we can say that, terms of $x$ in the expansion of ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$ are:
${{x}^{22-3\times 0}},\,{{x}^{22-3\times 1}},\,{{x}^{22-3\times 2}},\,{{x}^{22-3\times 3}},\,{{x}^{22-3\times 4}},\,{{x}^{22-3\times 5}},\,{{x}^{22-3\times 6}},\,{{x}^{22-3\times 7}},\,{{x}^{22-3\times 8}},{{x}^{22-3\times 9}},\,{{x}^{22-3\times 10}}$ and ${{x}^{22-3\times 11}}$
$={{x}^{22-0}},\,{{x}^{22-3}},\,{{x}^{22-6}},\,{{x}^{22-9}},\,{{x}^{22-12}},\,{{x}^{22-15}},\,{{x}^{22-18}},\,{{x}^{22-21}},\,{{x}^{22-24}},{{x}^{22-27}},\,{{x}^{22-30}}$ and ${{x}^{22-33}}$
$={{x}^{22}},\,{{x}^{19}},\,{{x}^{16}},\,{{x}^{13}},\,{{x}^{10}},\,{{x}^{7}},\,{{x}^{4}},\,{{x}^{1}},\,{{x}^{-2}},{{x}^{-5}},\,{{x}^{-8}}$and ${{x}^{-11}}$
Hence, we can see that, there is no term involving ${{x}^{2}}$ in expansion of expression ${{\left( 2{{x}^{2}}-\dfrac{3}{x} \right)}^{11}}$.
Hence proved.
Note: This question can also be done by actually expanding the whole expression with all its coefficients. But it must be noted that we only need to check if ${{x}^{2}}$ is present or not and don’t need its coefficient. So, full expansion is not needed.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

