
Prove that the value of $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Answer
617.1k+ views
Hint: To prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$, we will solve L.H.S and try to show that it is equal to R.H.S. By using the formula of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] to solve this problem.
Complete step-by-step answer:
It is given in the question to prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$. We know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] using this formula we will expand L.H.S. We get –
${{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}$
$\begin{align}
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\
\end{align}$
Taking $n!$ as common from both the terms, we get
$\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]$
We can write $r!$ as $r\times (r-1)!$ because $n!$ can be written as $n\times (n-1)\times (n-2)\times (n-3)\times ........................$
$\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]$
Taking $(r-1)!$ common from denominator, we get
$=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We can also write $(n-r+1)$ as $(n-r+1)\times (n-r)!$. Then, we get
$\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]$
Taking $(n-r)!$ as common, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]$
Taking L.C.M of $r$ and $(n-r+1)$ as $r(n-r+1)$, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]$
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]$
\[\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}\]
\[\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}\]
We can write $(n+1)\times n!$ as $(n+1)!$ because we are multiplying $n!$ to its successive number. For example, we can write $(7+1)\times 7!$ as $8!$. Also, $(n-r+1)(n-r)!$ can be written as $(n-r+1)!$ and $r(r-1)!$ can be written as $r!$.
$\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!}$ $={}^{n+1}{{C}_{r}}$ = L.H.S
On expanding ${}^{n+1}{{C}_{r}}$ using formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we get
${}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}$. Therefore,
L.H.S = R.H.S.
Hence, we proved $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Note: It is very important to differentiate between $^{n}{{C}_{r}}$ and ${}^{n}{{P}_{r}}$ expansion. As, $^{n}{{C}_{r}}$ gives the total combination whereas, ${}^{n}{{P}_{r}}$ gives total permutation and the expansion of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and ${}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.
Complete step-by-step answer:
It is given in the question to prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$. We know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] using this formula we will expand L.H.S. We get –
${{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}$
$\begin{align}
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\
\end{align}$
Taking $n!$ as common from both the terms, we get
$\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]$
We can write $r!$ as $r\times (r-1)!$ because $n!$ can be written as $n\times (n-1)\times (n-2)\times (n-3)\times ........................$
$\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]$
Taking $(r-1)!$ common from denominator, we get
$=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We can also write $(n-r+1)$ as $(n-r+1)\times (n-r)!$. Then, we get
$\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]$
Taking $(n-r)!$ as common, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]$
Taking L.C.M of $r$ and $(n-r+1)$ as $r(n-r+1)$, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]$
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]$
\[\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}\]
\[\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}\]
We can write $(n+1)\times n!$ as $(n+1)!$ because we are multiplying $n!$ to its successive number. For example, we can write $(7+1)\times 7!$ as $8!$. Also, $(n-r+1)(n-r)!$ can be written as $(n-r+1)!$ and $r(r-1)!$ can be written as $r!$.
$\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!}$ $={}^{n+1}{{C}_{r}}$ = L.H.S
On expanding ${}^{n+1}{{C}_{r}}$ using formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we get
${}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}$. Therefore,
L.H.S = R.H.S.
Hence, we proved $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Note: It is very important to differentiate between $^{n}{{C}_{r}}$ and ${}^{n}{{P}_{r}}$ expansion. As, $^{n}{{C}_{r}}$ gives the total combination whereas, ${}^{n}{{P}_{r}}$ gives total permutation and the expansion of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and ${}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

