
Prove that the value of $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Answer
602.4k+ views
Hint: To prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$, we will solve L.H.S and try to show that it is equal to R.H.S. By using the formula of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] to solve this problem.
Complete step-by-step answer:
It is given in the question to prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$. We know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] using this formula we will expand L.H.S. We get –
${{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}$
$\begin{align}
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\
\end{align}$
Taking $n!$ as common from both the terms, we get
$\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]$
We can write $r!$ as $r\times (r-1)!$ because $n!$ can be written as $n\times (n-1)\times (n-2)\times (n-3)\times ........................$
$\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]$
Taking $(r-1)!$ common from denominator, we get
$=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We can also write $(n-r+1)$ as $(n-r+1)\times (n-r)!$. Then, we get
$\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]$
Taking $(n-r)!$ as common, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]$
Taking L.C.M of $r$ and $(n-r+1)$ as $r(n-r+1)$, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]$
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]$
\[\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}\]
\[\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}\]
We can write $(n+1)\times n!$ as $(n+1)!$ because we are multiplying $n!$ to its successive number. For example, we can write $(7+1)\times 7!$ as $8!$. Also, $(n-r+1)(n-r)!$ can be written as $(n-r+1)!$ and $r(r-1)!$ can be written as $r!$.
$\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!}$ $={}^{n+1}{{C}_{r}}$ = L.H.S
On expanding ${}^{n+1}{{C}_{r}}$ using formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we get
${}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}$. Therefore,
L.H.S = R.H.S.
Hence, we proved $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Note: It is very important to differentiate between $^{n}{{C}_{r}}$ and ${}^{n}{{P}_{r}}$ expansion. As, $^{n}{{C}_{r}}$ gives the total combination whereas, ${}^{n}{{P}_{r}}$ gives total permutation and the expansion of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and ${}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.
Complete step-by-step answer:
It is given in the question to prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$. We know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] using this formula we will expand L.H.S. We get –
${{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}$
$\begin{align}
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\
\end{align}$
Taking $n!$ as common from both the terms, we get
$\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]$
We can write $r!$ as $r\times (r-1)!$ because $n!$ can be written as $n\times (n-1)\times (n-2)\times (n-3)\times ........................$
$\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]$
Taking $(r-1)!$ common from denominator, we get
$=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We can also write $(n-r+1)$ as $(n-r+1)\times (n-r)!$. Then, we get
$\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]$
Taking $(n-r)!$ as common, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]$
Taking L.C.M of $r$ and $(n-r+1)$ as $r(n-r+1)$, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]$
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]$
\[\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}\]
\[\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}\]
We can write $(n+1)\times n!$ as $(n+1)!$ because we are multiplying $n!$ to its successive number. For example, we can write $(7+1)\times 7!$ as $8!$. Also, $(n-r+1)(n-r)!$ can be written as $(n-r+1)!$ and $r(r-1)!$ can be written as $r!$.
$\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!}$ $={}^{n+1}{{C}_{r}}$ = L.H.S
On expanding ${}^{n+1}{{C}_{r}}$ using formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we get
${}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}$. Therefore,
L.H.S = R.H.S.
Hence, we proved $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Note: It is very important to differentiate between $^{n}{{C}_{r}}$ and ${}^{n}{{P}_{r}}$ expansion. As, $^{n}{{C}_{r}}$ gives the total combination whereas, ${}^{n}{{P}_{r}}$ gives total permutation and the expansion of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and ${}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

