
Prove that the value of $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Answer
520.2k+ views
Hint: To prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$, we will solve L.H.S and try to show that it is equal to R.H.S. By using the formula of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] to solve this problem.
Complete step-by-step answer:
It is given in the question to prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$. We know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] using this formula we will expand L.H.S. We get –
${{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}$
$\begin{align}
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\
\end{align}$
Taking $n!$ as common from both the terms, we get
$\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]$
We can write $r!$ as $r\times (r-1)!$ because $n!$ can be written as $n\times (n-1)\times (n-2)\times (n-3)\times ........................$
$\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]$
Taking $(r-1)!$ common from denominator, we get
$=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We can also write $(n-r+1)$ as $(n-r+1)\times (n-r)!$. Then, we get
$\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]$
Taking $(n-r)!$ as common, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]$
Taking L.C.M of $r$ and $(n-r+1)$ as $r(n-r+1)$, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]$
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]$
\[\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}\]
\[\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}\]
We can write $(n+1)\times n!$ as $(n+1)!$ because we are multiplying $n!$ to its successive number. For example, we can write $(7+1)\times 7!$ as $8!$. Also, $(n-r+1)(n-r)!$ can be written as $(n-r+1)!$ and $r(r-1)!$ can be written as $r!$.
$\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!}$ $={}^{n+1}{{C}_{r}}$ = L.H.S
On expanding ${}^{n+1}{{C}_{r}}$ using formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we get
${}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}$. Therefore,
L.H.S = R.H.S.
Hence, we proved $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Note: It is very important to differentiate between $^{n}{{C}_{r}}$ and ${}^{n}{{P}_{r}}$ expansion. As, $^{n}{{C}_{r}}$ gives the total combination whereas, ${}^{n}{{P}_{r}}$ gives total permutation and the expansion of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and ${}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.
Complete step-by-step answer:
It is given in the question to prove $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$. We know that, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] using this formula we will expand L.H.S. We get –
${{\Rightarrow }^{n}}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}$
$\begin{align}
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{n-(r+1)!(r-1)!} \\
& \Rightarrow \dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{(n-r+1)!(r-1)!} \\
\end{align}$
Taking $n!$ as common from both the terms, we get
$\Rightarrow n!\left[ \dfrac{1}{r!\left( n-r \right)!}+\dfrac{1}{(n-r+1)!(r-1)!} \right]$
We can write $r!$ as $r\times (r-1)!$ because $n!$ can be written as $n\times (n-1)\times (n-2)\times (n-3)\times ........................$
$\Rightarrow n!\left[ \dfrac{1}{r(r-1)!\left( n-r \right)!}+\dfrac{1}{(r-1)!\left( n-r+1 \right)!} \right]$
Taking $(r-1)!$ common from denominator, we get
$=\dfrac{n!}{(r-1)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We can also write $(n-r+1)$ as $(n-r+1)\times (n-r)!$. Then, we get
$\Rightarrow \dfrac{n!}{(r-1)!}\left[ \dfrac{1}{(n-r)!\times r}+\dfrac{1}{(n-r+1)(n-r)!} \right]$
Taking $(n-r)!$ as common, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{1}{r}+\dfrac{1}{(n-r+1)} \right]$
Taking L.C.M of $r$ and $(n-r+1)$ as $r(n-r+1)$, we get
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n-r+1+r}{r(n-r+1)} \right]$
$\Rightarrow \dfrac{n!}{(n-r)!(r-1)!}\left[ \dfrac{n+1}{r(n-r+1)} \right]$
\[\Rightarrow \dfrac{(n+1)n!}{(r-1)!(n-r)!\times r(n-r+1)}\]
\[\Rightarrow \dfrac{(n+1)n!}{(n-r+1)(r-1)!(n-r)!\times r}\]
We can write $(n+1)\times n!$ as $(n+1)!$ because we are multiplying $n!$ to its successive number. For example, we can write $(7+1)\times 7!$ as $8!$. Also, $(n-r+1)(n-r)!$ can be written as $(n-r+1)!$ and $r(r-1)!$ can be written as $r!$.
$\Rightarrow \dfrac{(n+1)!}{(n-r+1)!\times r!}$ $={}^{n+1}{{C}_{r}}$ = L.H.S
On expanding ${}^{n+1}{{C}_{r}}$ using formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we get
${}^{n+1}{{C}_{r}}=\dfrac{(n+1)!}{(n-r+1)!\times r!}$. Therefore,
L.H.S = R.H.S.
Hence, we proved $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Note: It is very important to differentiate between $^{n}{{C}_{r}}$ and ${}^{n}{{P}_{r}}$ expansion. As, $^{n}{{C}_{r}}$ gives the total combination whereas, ${}^{n}{{P}_{r}}$ gives total permutation and the expansion of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and ${}^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
