
Prove that the standard deviation of first n natural numbers is equal to
$\sigma =\sqrt{\dfrac{{{n}^{2}}-1}{12}}$
Answer
618.6k+ views
Hint: Use the definition of standard deviation as the square root of the variance and $\operatorname{var}\left( X \right)=E\left( {{\left( X-\mu \right)}^{2}} \right)$ where $\mu =E\left( X \right)$. Use linearity of expression to prove that $\operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)-{{\left[ E\left( X \right) \right]}^{2}}$.
Using formula form the sum of squares of first n natural numbers and the sum of first n natural number to find the individual terms in the expression for var(X) , $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ and $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$
Complete step-by-step answer:
We know that
$\operatorname{var}\left( X \right)=E\left( {{\left( X-\mu \right)}^{2}} \right)$
Using ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ we get
$\operatorname{var}(X)=E\left( {{X}^{2}}+{{\mu }^{2}}-2X\mu \right)$
Now we know that $E\left( X+Y \right)=E\left( X+Y \right)$
Using the above formula, we get
$\operatorname{var}(X)=E\left( {{X}^{2}} \right)+E\left( {{\mu }^{2}} \right)+E\left( -2X\mu \right)$
We know that $E\left( aX \right)=aE\left( X \right)$ and $E\left( a \right)=a$, we get
$\operatorname{var}(X)=E\left( {{X}^{2}} \right)+{{\mu }^{2}}-2\mu E\left( X \right)$
Using $\mu =E\left( X \right)$
$\begin{align}
& \operatorname{var}(X)=E\left( {{X}^{2}} \right)+{{\left( E\left( X \right) \right)}^{2}}-2E\left( X \right)E\left( X \right) \\
& \Rightarrow \operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)+{{\left( E\left( X \right) \right)}^{2}}-2{{\left( E\left( X \right) \right)}^{2}} \\
& \Rightarrow \operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)-{{\left( E\left( X \right) \right)}^{2}} \\
\end{align}$
The standard deviation of discrete statistic data D is equal to the standard deviation of random variable X having the following properties,
$P\left( X=x \right)=\dfrac{1}{\left| D \right|},\text{ if }x\in D$and $P\left( X=x \right)=0,\text{ if }x\notin D$
So we choose X to be the random variable such that $P\left( X=r \right)=\dfrac{1}{n},1\le r\le n$ and $P\left( X \right)=0\text{ otherwise}$.
The standard deviation of this random variable will be equal to the standard deviation of first n natural numbers.
We know that \[E\left( f\left( X \right) \right)=\sum\limits_{r\in S}{P\left( X=r \right)f\left( r \right)}\]
Using the above formula taking f(x) = x, we get
$\begin{align}
& E\left( X \right)=\sum\limits_{r=1}^{n}{P\left( X=r \right)r} \\
& =\sum\limits_{r=1}^{n}{\dfrac{1}{n}r} \\
& =\dfrac{1}{n}\sum\limits_{r=1}^{n}{r} \\
\end{align}$
Using $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$, we get
$\begin{align}
& E\left( X \right)=\dfrac{n\left( n+1 \right)}{2n} \\
& \Rightarrow E\left( X \right)=\dfrac{n+1}{2} \\
\end{align}$
We know that \[E\left( f\left( X \right) \right)=\sum\limits_{r\in S}{P\left( X=r \right)f\left( r \right)}\]
Using the above formula taking $f\left( x \right)={{x}^{2}}$, we get
$\begin{align}
& E\left( {{X}^{2}} \right)=\sum\limits_{r=1}^{n}{P\left( X=r \right){{r}^{2}}} \\
& =\dfrac{1}{n}\sum\limits_{r=1}^{n}{{{r}^{2}}} \\
\end{align}$
Using $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$, we get
$\begin{align}
& E\left( {{X}^{2}} \right)=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6n} \\
& =\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} \\
\end{align}$
Using $\operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)-{{\left( E\left( X \right) \right)}^{2}}$, we get
$\begin{align}
& \operatorname{var}\left( X \right)=\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}-{{\left( \dfrac{n+1}{2} \right)}^{2}} \\
& =\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{{{\left( n+1 \right)}^{2}}}{4} \\
& =\dfrac{n+1}{12}\left( 4n+2-3n-3 \right) \\
& =\dfrac{\left( n+1 \right)\left( n-1 \right)}{12} \\
& =\dfrac{{{n}^{2}}-1}{12} \\
\end{align}$
We know that $\sigma \left( X \right)=\sqrt{\operatorname{var}\left( X \right)}$
Using the above formula, we get
$\sigma =\sqrt{\dfrac{{{n}^{2}}-1}{12}}$
Note: [1] Instead of using probability for finding the standard deviation, you can use the formula
\[E\left( D \right)=\dfrac{\sum\limits_{x\in D}{x}}{\left| D \right|}\] and $E\left( {{D}^{2}} \right)=\dfrac{\sum\limits_{x\in D}{{{x}^{2}}}}{\left| D \right|}$
Here we have $D=\left\{ 1,2,3,..,n \right\}$
So \[E\left( D \right)=\dfrac{\sum\limits_{x\in D}{x}}{\left| D \right|}=\dfrac{\sum\limits_{r=1}^{n}{r}}{n}=\dfrac{n+1}{2}\]
and $E\left( {{D}^{2}} \right)=\dfrac{\sum\limits_{r=1}^{n}{{{r}^{2}}}}{n}=\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}$
which is the same as obtained above.
Using formula form the sum of squares of first n natural numbers and the sum of first n natural number to find the individual terms in the expression for var(X) , $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ and $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$
Complete step-by-step answer:
We know that
$\operatorname{var}\left( X \right)=E\left( {{\left( X-\mu \right)}^{2}} \right)$
Using ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ we get
$\operatorname{var}(X)=E\left( {{X}^{2}}+{{\mu }^{2}}-2X\mu \right)$
Now we know that $E\left( X+Y \right)=E\left( X+Y \right)$
Using the above formula, we get
$\operatorname{var}(X)=E\left( {{X}^{2}} \right)+E\left( {{\mu }^{2}} \right)+E\left( -2X\mu \right)$
We know that $E\left( aX \right)=aE\left( X \right)$ and $E\left( a \right)=a$, we get
$\operatorname{var}(X)=E\left( {{X}^{2}} \right)+{{\mu }^{2}}-2\mu E\left( X \right)$
Using $\mu =E\left( X \right)$
$\begin{align}
& \operatorname{var}(X)=E\left( {{X}^{2}} \right)+{{\left( E\left( X \right) \right)}^{2}}-2E\left( X \right)E\left( X \right) \\
& \Rightarrow \operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)+{{\left( E\left( X \right) \right)}^{2}}-2{{\left( E\left( X \right) \right)}^{2}} \\
& \Rightarrow \operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)-{{\left( E\left( X \right) \right)}^{2}} \\
\end{align}$
The standard deviation of discrete statistic data D is equal to the standard deviation of random variable X having the following properties,
$P\left( X=x \right)=\dfrac{1}{\left| D \right|},\text{ if }x\in D$and $P\left( X=x \right)=0,\text{ if }x\notin D$
So we choose X to be the random variable such that $P\left( X=r \right)=\dfrac{1}{n},1\le r\le n$ and $P\left( X \right)=0\text{ otherwise}$.
The standard deviation of this random variable will be equal to the standard deviation of first n natural numbers.
We know that \[E\left( f\left( X \right) \right)=\sum\limits_{r\in S}{P\left( X=r \right)f\left( r \right)}\]
Using the above formula taking f(x) = x, we get
$\begin{align}
& E\left( X \right)=\sum\limits_{r=1}^{n}{P\left( X=r \right)r} \\
& =\sum\limits_{r=1}^{n}{\dfrac{1}{n}r} \\
& =\dfrac{1}{n}\sum\limits_{r=1}^{n}{r} \\
\end{align}$
Using $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$, we get
$\begin{align}
& E\left( X \right)=\dfrac{n\left( n+1 \right)}{2n} \\
& \Rightarrow E\left( X \right)=\dfrac{n+1}{2} \\
\end{align}$
We know that \[E\left( f\left( X \right) \right)=\sum\limits_{r\in S}{P\left( X=r \right)f\left( r \right)}\]
Using the above formula taking $f\left( x \right)={{x}^{2}}$, we get
$\begin{align}
& E\left( {{X}^{2}} \right)=\sum\limits_{r=1}^{n}{P\left( X=r \right){{r}^{2}}} \\
& =\dfrac{1}{n}\sum\limits_{r=1}^{n}{{{r}^{2}}} \\
\end{align}$
Using $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$, we get
$\begin{align}
& E\left( {{X}^{2}} \right)=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6n} \\
& =\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} \\
\end{align}$
Using $\operatorname{var}\left( X \right)=E\left( {{X}^{2}} \right)-{{\left( E\left( X \right) \right)}^{2}}$, we get
$\begin{align}
& \operatorname{var}\left( X \right)=\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}-{{\left( \dfrac{n+1}{2} \right)}^{2}} \\
& =\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{{{\left( n+1 \right)}^{2}}}{4} \\
& =\dfrac{n+1}{12}\left( 4n+2-3n-3 \right) \\
& =\dfrac{\left( n+1 \right)\left( n-1 \right)}{12} \\
& =\dfrac{{{n}^{2}}-1}{12} \\
\end{align}$
We know that $\sigma \left( X \right)=\sqrt{\operatorname{var}\left( X \right)}$
Using the above formula, we get
$\sigma =\sqrt{\dfrac{{{n}^{2}}-1}{12}}$
Note: [1] Instead of using probability for finding the standard deviation, you can use the formula
\[E\left( D \right)=\dfrac{\sum\limits_{x\in D}{x}}{\left| D \right|}\] and $E\left( {{D}^{2}} \right)=\dfrac{\sum\limits_{x\in D}{{{x}^{2}}}}{\left| D \right|}$
Here we have $D=\left\{ 1,2,3,..,n \right\}$
So \[E\left( D \right)=\dfrac{\sum\limits_{x\in D}{x}}{\left| D \right|}=\dfrac{\sum\limits_{r=1}^{n}{r}}{n}=\dfrac{n+1}{2}\]
and $E\left( {{D}^{2}} \right)=\dfrac{\sum\limits_{r=1}^{n}{{{r}^{2}}}}{n}=\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}$
which is the same as obtained above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

