
Prove that the points \[\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right)\] are collinear if, \[\dfrac{1}{a} + \dfrac{1}{b} = 1\].
Answer
606.9k+ views
Hint: First of all, find the area of the triangle of the given points. The given points are collinear if the area formed by the three points is zero. Use the given condition to prove the collinearity of the given points.
Complete step-by-step answer:
Let the given points be \[{\text{A }}\left( {a,0} \right)\], \[{\text{B }}\left( {0,b} \right)\] and \[{\text{C }}\left( {1,1} \right)\]
Given \[\dfrac{1}{a} + \dfrac{1}{b} = 1\]
i.e., \[\dfrac{1}{a} + \dfrac{1}{b} - 1 = 0...........................................\left( 1 \right)\]
If the above points are collinear, they will lie on the same line i.e., they will not form a triangle.
Therefore, area of \[\Delta ABC = 0\]
We know that the area of the triangle formed by the points A \[\left( {{x_1},{y_1}} \right)\], B \[\left( {{x_2},{y_2}} \right)\] and C \[\left( {{x_3},{y_3}} \right)\] is given by \[\Delta = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\]
So, area of \[\Delta ABC\] is given by
\[
\Rightarrow \Delta = \dfrac{1}{2}\left[ {a\left( {b - 1} \right) + 0\left( {1 - 0} \right) + 1\left( {0 - b} \right)} \right] \\
\Rightarrow \Delta = \dfrac{1}{2}\left[ {a\left( {b - 1} \right) + 0\left( 1 \right) + 1\left( { - b} \right)} \right] \\
\Rightarrow \Delta = \dfrac{1}{2}\left[ {ab - a - b} \right] \\
\]
Multiplying and dividing with \[ab\]on left-hand side, we get
\[
\Rightarrow \Delta = \dfrac{1}{2}\left( {ab} \right)\left[ {\dfrac{{ab - a - b}}{{ab}}} \right] \\
\Rightarrow \Delta = \dfrac{{ab}}{2}\left[ {1 - \dfrac{a}{{ab}} - \dfrac{b}{{ab}}} \right] \\
\Rightarrow \Delta = \dfrac{{ab}}{2}\left[ {1 - \dfrac{1}{b} - \dfrac{1}{a}} \right] \\
\Rightarrow \Delta = \dfrac{{ - ab}}{2}\left[ {\dfrac{1}{a} + \dfrac{1}{b} - 1} \right] \\
\Rightarrow \Delta = \dfrac{{ - ab}}{2}\left( 0 \right){\text{ }}\left[ {\because {\text{using }}\left( 1 \right)} \right] \\
\therefore \Delta = 0 \\
\]
Hence the points \[\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right)\] are collinear.
Note: We can prove the collinearity of the three by another method i.e., if the sum of the lengths of any two-line segments among AB, BC, and CA is equal to the length of the remaining line segment, then the points are said to be in collinear.
Complete step-by-step answer:
Let the given points be \[{\text{A }}\left( {a,0} \right)\], \[{\text{B }}\left( {0,b} \right)\] and \[{\text{C }}\left( {1,1} \right)\]
Given \[\dfrac{1}{a} + \dfrac{1}{b} = 1\]
i.e., \[\dfrac{1}{a} + \dfrac{1}{b} - 1 = 0...........................................\left( 1 \right)\]
If the above points are collinear, they will lie on the same line i.e., they will not form a triangle.
Therefore, area of \[\Delta ABC = 0\]
We know that the area of the triangle formed by the points A \[\left( {{x_1},{y_1}} \right)\], B \[\left( {{x_2},{y_2}} \right)\] and C \[\left( {{x_3},{y_3}} \right)\] is given by \[\Delta = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\]
So, area of \[\Delta ABC\] is given by
\[
\Rightarrow \Delta = \dfrac{1}{2}\left[ {a\left( {b - 1} \right) + 0\left( {1 - 0} \right) + 1\left( {0 - b} \right)} \right] \\
\Rightarrow \Delta = \dfrac{1}{2}\left[ {a\left( {b - 1} \right) + 0\left( 1 \right) + 1\left( { - b} \right)} \right] \\
\Rightarrow \Delta = \dfrac{1}{2}\left[ {ab - a - b} \right] \\
\]
Multiplying and dividing with \[ab\]on left-hand side, we get
\[
\Rightarrow \Delta = \dfrac{1}{2}\left( {ab} \right)\left[ {\dfrac{{ab - a - b}}{{ab}}} \right] \\
\Rightarrow \Delta = \dfrac{{ab}}{2}\left[ {1 - \dfrac{a}{{ab}} - \dfrac{b}{{ab}}} \right] \\
\Rightarrow \Delta = \dfrac{{ab}}{2}\left[ {1 - \dfrac{1}{b} - \dfrac{1}{a}} \right] \\
\Rightarrow \Delta = \dfrac{{ - ab}}{2}\left[ {\dfrac{1}{a} + \dfrac{1}{b} - 1} \right] \\
\Rightarrow \Delta = \dfrac{{ - ab}}{2}\left( 0 \right){\text{ }}\left[ {\because {\text{using }}\left( 1 \right)} \right] \\
\therefore \Delta = 0 \\
\]
Hence the points \[\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right)\] are collinear.
Note: We can prove the collinearity of the three by another method i.e., if the sum of the lengths of any two-line segments among AB, BC, and CA is equal to the length of the remaining line segment, then the points are said to be in collinear.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

