
Prove that the points, \[A( - 3, - 2),B(5, - 2),C(9,3),D(1,3)\] are the vertices of a parallelogram.
Answer
572.7k+ views
Hint: Here we are given 4 points. To prove that it is a parallelogram, we need to calculate the length of the sides, we use the distance formula for it. And then check if opposite sides are equal.
Complete step-by-step answer:
We know that the distance between the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is,
\[d = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
Let the given vertices be \[A = \left( { - 3, - 2} \right),\;B = \left( {5, - 2} \right),\;C = (9,3)\] and \[D = \left( {1,3} \right)\]
We first find the distance between \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\]as follows:
\[AB = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\], we get,
\[ = \sqrt {{{\left( {5 - ( - 3)} \right)}^2} + {{\left( {( - 2) - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( {8} \right)}^2} + {{\left( {0} \right)}^2}} \;\]
\[ = \sqrt {64} \]
On taking positive root we get,
\[ = 8\]units
Similarly, the distance between \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\] is:
\[BC = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\], we get,
\[ = \sqrt {{{\left( {9 - 5} \right)}^2} + {{\left( {3 - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( 4 \right)}^2} + {{\left( {5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \;\]units
Now, the distance between \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\]is:
\[CD = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the value of \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\], we get,
\[ = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \;\]
On further simplification we get,
\[ = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} \;\]
\[ = \sqrt {64} \;\]
On taking positive square root we get,
\[ = 8\]units
Now, the distance between \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\] is:
\[DA = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\], we get,
\[ = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( { - 2 - 3} \right)}^2}} \;\]
On simplifying further we get,
\[ = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \]units
We also know that if the opposite sides have equal side lengths, then ABCD is a parallelogram.
Here, since the lengths of the opposite sides are equal that is:
\[AB = CD = 8\]units and \[BC = DA = \sqrt {41} \]units.
Hence, the given vertices are the vertices of a parallelogram.
Note: There are also other important properties of parallelograms to know:
1.Opposite sides are congruent \[\left( {AB{\text{ }} = {\text{ }}DC} \right).\]
2.Opposite angles are congruent \[\left( {D{\text{ }} = {\text{ }}B} \right).\]
3.Consecutive angles are supplementary \[\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).\]
4.If one angle is right, then all angles are right.
5.The diagonals of a parallelogram bisect each other.
6.Each diagonal of a parallelogram separates it into two congruent triangles.
Complete step-by-step answer:
We know that the distance between the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is,
\[d = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
Let the given vertices be \[A = \left( { - 3, - 2} \right),\;B = \left( {5, - 2} \right),\;C = (9,3)\] and \[D = \left( {1,3} \right)\]
We first find the distance between \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\]as follows:
\[AB = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\], we get,
\[ = \sqrt {{{\left( {5 - ( - 3)} \right)}^2} + {{\left( {( - 2) - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( {8} \right)}^2} + {{\left( {0} \right)}^2}} \;\]
\[ = \sqrt {64} \]
On taking positive root we get,
\[ = 8\]units
Similarly, the distance between \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\] is:
\[BC = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\], we get,
\[ = \sqrt {{{\left( {9 - 5} \right)}^2} + {{\left( {3 - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( 4 \right)}^2} + {{\left( {5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \;\]units
Now, the distance between \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\]is:
\[CD = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the value of \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\], we get,
\[ = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \;\]
On further simplification we get,
\[ = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} \;\]
\[ = \sqrt {64} \;\]
On taking positive square root we get,
\[ = 8\]units
Now, the distance between \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\] is:
\[DA = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\], we get,
\[ = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( { - 2 - 3} \right)}^2}} \;\]
On simplifying further we get,
\[ = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \]units
We also know that if the opposite sides have equal side lengths, then ABCD is a parallelogram.
Here, since the lengths of the opposite sides are equal that is:
\[AB = CD = 8\]units and \[BC = DA = \sqrt {41} \]units.
Hence, the given vertices are the vertices of a parallelogram.
Note: There are also other important properties of parallelograms to know:
1.Opposite sides are congruent \[\left( {AB{\text{ }} = {\text{ }}DC} \right).\]
2.Opposite angles are congruent \[\left( {D{\text{ }} = {\text{ }}B} \right).\]
3.Consecutive angles are supplementary \[\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).\]
4.If one angle is right, then all angles are right.
5.The diagonals of a parallelogram bisect each other.
6.Each diagonal of a parallelogram separates it into two congruent triangles.
Recently Updated Pages
Consider an infinite distribution of point masses each class 11 physics CBSE

You are provided with the seeds of a gram wheat rice class 11 biology CBSE

Amit buys a few grams of gold at the poles as per the class 11 physics CBSE

The ratio of the number of hybrid and pure orbitals class 11 chemistry CBSE

Explain how rainwater harvesting can help in water class 11 biology CBSE

Briefly mention the mechanism of action of FSH class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

