
Prove that the points, \[A( - 3, - 2),B(5, - 2),C(9,3),D(1,3)\] are the vertices of a parallelogram.
Answer
571.5k+ views
Hint: Here we are given 4 points. To prove that it is a parallelogram, we need to calculate the length of the sides, we use the distance formula for it. And then check if opposite sides are equal.
Complete step-by-step answer:
We know that the distance between the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is,
\[d = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
Let the given vertices be \[A = \left( { - 3, - 2} \right),\;B = \left( {5, - 2} \right),\;C = (9,3)\] and \[D = \left( {1,3} \right)\]
We first find the distance between \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\]as follows:
\[AB = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\], we get,
\[ = \sqrt {{{\left( {5 - ( - 3)} \right)}^2} + {{\left( {( - 2) - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( {8} \right)}^2} + {{\left( {0} \right)}^2}} \;\]
\[ = \sqrt {64} \]
On taking positive root we get,
\[ = 8\]units
Similarly, the distance between \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\] is:
\[BC = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\], we get,
\[ = \sqrt {{{\left( {9 - 5} \right)}^2} + {{\left( {3 - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( 4 \right)}^2} + {{\left( {5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \;\]units
Now, the distance between \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\]is:
\[CD = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the value of \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\], we get,
\[ = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \;\]
On further simplification we get,
\[ = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} \;\]
\[ = \sqrt {64} \;\]
On taking positive square root we get,
\[ = 8\]units
Now, the distance between \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\] is:
\[DA = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\], we get,
\[ = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( { - 2 - 3} \right)}^2}} \;\]
On simplifying further we get,
\[ = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \]units
We also know that if the opposite sides have equal side lengths, then ABCD is a parallelogram.
Here, since the lengths of the opposite sides are equal that is:
\[AB = CD = 8\]units and \[BC = DA = \sqrt {41} \]units.
Hence, the given vertices are the vertices of a parallelogram.
Note: There are also other important properties of parallelograms to know:
1.Opposite sides are congruent \[\left( {AB{\text{ }} = {\text{ }}DC} \right).\]
2.Opposite angles are congruent \[\left( {D{\text{ }} = {\text{ }}B} \right).\]
3.Consecutive angles are supplementary \[\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).\]
4.If one angle is right, then all angles are right.
5.The diagonals of a parallelogram bisect each other.
6.Each diagonal of a parallelogram separates it into two congruent triangles.
Complete step-by-step answer:
We know that the distance between the two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is,
\[d = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
Let the given vertices be \[A = \left( { - 3, - 2} \right),\;B = \left( {5, - 2} \right),\;C = (9,3)\] and \[D = \left( {1,3} \right)\]
We first find the distance between \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\]as follows:
\[AB = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[A = \left( { - 3, - 2} \right)\;\]and \[B = \left( {5, - 2} \right)\;\;\], we get,
\[ = \sqrt {{{\left( {5 - ( - 3)} \right)}^2} + {{\left( {( - 2) - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( {8} \right)}^2} + {{\left( {0} \right)}^2}} \;\]
\[ = \sqrt {64} \]
On taking positive root we get,
\[ = 8\]units
Similarly, the distance between \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\] is:
\[BC = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[B = \left( {5, - 2} \right)\;\]and \[C = \left( {9,3} \right)\;\], we get,
\[ = \sqrt {{{\left( {9 - 5} \right)}^2} + {{\left( {3 - ( - 2)} \right)}^2}} \;\]
On simplifying we get,
\[ = \sqrt {{{\left( 4 \right)}^2} + {{\left( {5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \;\]units
Now, the distance between \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\]is:
\[CD = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the value of \[C = \left( {9,3} \right)\;\] and \[D = (1,3)\;\], we get,
\[ = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \;\]
On further simplification we get,
\[ = \sqrt {{{\left( { - 8} \right)}^2} + {{\left( 0 \right)}^2}} \;\]
\[ = \sqrt {64} \;\]
On taking positive square root we get,
\[ = 8\]units
Now, the distance between \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\] is:
\[DA = \sqrt {{{\left( {{x_{2}} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \;\]
On substituting the values of \[D = \left( {1,3} \right)\;\]and \[A = \left( { - 3, - 2} \right)\;\], we get,
\[ = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( { - 2 - 3} \right)}^2}} \;\]
On simplifying further we get,
\[ = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 5} \right)}^2}} \;\]
\[ = \sqrt {16 + 25} \;\]
\[ = \sqrt {41} \]units
We also know that if the opposite sides have equal side lengths, then ABCD is a parallelogram.
Here, since the lengths of the opposite sides are equal that is:
\[AB = CD = 8\]units and \[BC = DA = \sqrt {41} \]units.
Hence, the given vertices are the vertices of a parallelogram.
Note: There are also other important properties of parallelograms to know:
1.Opposite sides are congruent \[\left( {AB{\text{ }} = {\text{ }}DC} \right).\]
2.Opposite angles are congruent \[\left( {D{\text{ }} = {\text{ }}B} \right).\]
3.Consecutive angles are supplementary \[\left( {A{\text{ }} + {\text{ }}D{\text{ }} = {\text{ }}180^\circ } \right).\]
4.If one angle is right, then all angles are right.
5.The diagonals of a parallelogram bisect each other.
6.Each diagonal of a parallelogram separates it into two congruent triangles.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

