
Prove that the points (-7, -3), (5, 10), (15, 8) and (3, -5) taken in order are the corners of the parallelogram.
Answer
611.1k+ views
Hint: Here, we have to prove that ABCD is a parallelogram by showing that the opposite sides are equal. That is to prove: AB = CD and BC = AD. Here, to prove these we have to apply the distance formula:
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Complete Step-by-Step solution:
Here, we are given four points (-7, -3), (5, 10), (15, 8) and (3, -5). Now we have to prove these are the vertices of a parallelogram.
Now, let us take the four vertices as A (-7, -3), B (5, 10), C (15, 8) and D (3, -5).
First let us consider the figure:
We know that in a parallelogram the opposite sides are equal. So, here we have to prove that:
AB = CD
BC = AD
Here, to prove all these things we have to apply the distance formula. For that consider two points \[P({{x}_{1}},{{y}_{1}})\] and $Q({{x}_{2}}.{{y}_{2}})$ then the distance between them is given by the distance formula, d:
$d=PQ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Now, consider the points A (-7, -3) and B (5, 10), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 5,10 \right)$. By applying the distance formula we will get:
$\begin{align}
& AB=\sqrt{{{(5-(-7))}^{2}}+{{(10-(-3))}^{2}}} \\
& AB=\sqrt{{{(5+7)}^{2}}+{{(10+3)}^{2}}} \\
& AB=\sqrt{{{12}^{2}}+{{13}^{2}}} \\
& AB=\sqrt{144+169} \\
& AB=\sqrt{313} \\
& AB=17.69 \\
\end{align}$
Now, consider the points C (15, 8) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 15,8 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& CD=\sqrt{{{(3-15)}^{2}}+{{(-5-8)}^{2}}} \\
& CD=\sqrt{{{(-12)}^{2}}+{{(-13)}^{2}}} \\
& CD=\sqrt{144+169} \\
& CD=\sqrt{313} \\
& CD=17.69 \\
\end{align}$
Hence, we can say that:
$AB=CD$
Now, let us consider the points A (-7, -3) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& AD=\sqrt{{{(3-(-7))}^{2}}+{{(-5-(-3))}^{2}}} \\
& AD=\sqrt{{{(3+7)}^{2}}+{{(-5+3)}^{2}}} \\
& AD=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& AD=\sqrt{100+4} \\
& AD=\sqrt{104} \\
& AD=10.19 \\
\end{align}$
Next, let us consider the points B (5, 10) and C (15, 8) where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 5,10 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 15,8 \right).$By applying the distance formula we will get:
$\begin{align}
& BC=\sqrt{{{(15-5)}^{2}}+{{(8-10)}^{2}}} \\
& BC=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& BC=\sqrt{100+4} \\
& BC=\sqrt{104} \\
& BC=10.19 \\
\end{align}$
Therefore, we can say that:
\[BC\text{ }=\text{ }AD\]
Hence, we have proved that the opposite sides are equal.
Therefore, we can say that ABCD is a parallelogram.
Note: We know that the diagonals of a parallelogram bisect each other. So, alternatively we can prove that ABCD is a parallelogram by showing that the midpoints of the diagonals AC and BD are equal.
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Complete Step-by-Step solution:
Here, we are given four points (-7, -3), (5, 10), (15, 8) and (3, -5). Now we have to prove these are the vertices of a parallelogram.
Now, let us take the four vertices as A (-7, -3), B (5, 10), C (15, 8) and D (3, -5).
First let us consider the figure:
We know that in a parallelogram the opposite sides are equal. So, here we have to prove that:
AB = CD
BC = AD
Here, to prove all these things we have to apply the distance formula. For that consider two points \[P({{x}_{1}},{{y}_{1}})\] and $Q({{x}_{2}}.{{y}_{2}})$ then the distance between them is given by the distance formula, d:
$d=PQ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Now, consider the points A (-7, -3) and B (5, 10), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 5,10 \right)$. By applying the distance formula we will get:
$\begin{align}
& AB=\sqrt{{{(5-(-7))}^{2}}+{{(10-(-3))}^{2}}} \\
& AB=\sqrt{{{(5+7)}^{2}}+{{(10+3)}^{2}}} \\
& AB=\sqrt{{{12}^{2}}+{{13}^{2}}} \\
& AB=\sqrt{144+169} \\
& AB=\sqrt{313} \\
& AB=17.69 \\
\end{align}$
Now, consider the points C (15, 8) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 15,8 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& CD=\sqrt{{{(3-15)}^{2}}+{{(-5-8)}^{2}}} \\
& CD=\sqrt{{{(-12)}^{2}}+{{(-13)}^{2}}} \\
& CD=\sqrt{144+169} \\
& CD=\sqrt{313} \\
& CD=17.69 \\
\end{align}$
Hence, we can say that:
$AB=CD$
Now, let us consider the points A (-7, -3) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& AD=\sqrt{{{(3-(-7))}^{2}}+{{(-5-(-3))}^{2}}} \\
& AD=\sqrt{{{(3+7)}^{2}}+{{(-5+3)}^{2}}} \\
& AD=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& AD=\sqrt{100+4} \\
& AD=\sqrt{104} \\
& AD=10.19 \\
\end{align}$
Next, let us consider the points B (5, 10) and C (15, 8) where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 5,10 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 15,8 \right).$By applying the distance formula we will get:
$\begin{align}
& BC=\sqrt{{{(15-5)}^{2}}+{{(8-10)}^{2}}} \\
& BC=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& BC=\sqrt{100+4} \\
& BC=\sqrt{104} \\
& BC=10.19 \\
\end{align}$
Therefore, we can say that:
\[BC\text{ }=\text{ }AD\]
Hence, we have proved that the opposite sides are equal.
Therefore, we can say that ABCD is a parallelogram.
Note: We know that the diagonals of a parallelogram bisect each other. So, alternatively we can prove that ABCD is a parallelogram by showing that the midpoints of the diagonals AC and BD are equal.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

