
Prove that the points (-7, -3), (5, 10), (15, 8) and (3, -5) taken in order are the corners of the parallelogram.
Answer
597k+ views
Hint: Here, we have to prove that ABCD is a parallelogram by showing that the opposite sides are equal. That is to prove: AB = CD and BC = AD. Here, to prove these we have to apply the distance formula:
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Complete Step-by-Step solution:
Here, we are given four points (-7, -3), (5, 10), (15, 8) and (3, -5). Now we have to prove these are the vertices of a parallelogram.
Now, let us take the four vertices as A (-7, -3), B (5, 10), C (15, 8) and D (3, -5).
First let us consider the figure:
We know that in a parallelogram the opposite sides are equal. So, here we have to prove that:
AB = CD
BC = AD
Here, to prove all these things we have to apply the distance formula. For that consider two points \[P({{x}_{1}},{{y}_{1}})\] and $Q({{x}_{2}}.{{y}_{2}})$ then the distance between them is given by the distance formula, d:
$d=PQ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Now, consider the points A (-7, -3) and B (5, 10), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 5,10 \right)$. By applying the distance formula we will get:
$\begin{align}
& AB=\sqrt{{{(5-(-7))}^{2}}+{{(10-(-3))}^{2}}} \\
& AB=\sqrt{{{(5+7)}^{2}}+{{(10+3)}^{2}}} \\
& AB=\sqrt{{{12}^{2}}+{{13}^{2}}} \\
& AB=\sqrt{144+169} \\
& AB=\sqrt{313} \\
& AB=17.69 \\
\end{align}$
Now, consider the points C (15, 8) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 15,8 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& CD=\sqrt{{{(3-15)}^{2}}+{{(-5-8)}^{2}}} \\
& CD=\sqrt{{{(-12)}^{2}}+{{(-13)}^{2}}} \\
& CD=\sqrt{144+169} \\
& CD=\sqrt{313} \\
& CD=17.69 \\
\end{align}$
Hence, we can say that:
$AB=CD$
Now, let us consider the points A (-7, -3) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& AD=\sqrt{{{(3-(-7))}^{2}}+{{(-5-(-3))}^{2}}} \\
& AD=\sqrt{{{(3+7)}^{2}}+{{(-5+3)}^{2}}} \\
& AD=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& AD=\sqrt{100+4} \\
& AD=\sqrt{104} \\
& AD=10.19 \\
\end{align}$
Next, let us consider the points B (5, 10) and C (15, 8) where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 5,10 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 15,8 \right).$By applying the distance formula we will get:
$\begin{align}
& BC=\sqrt{{{(15-5)}^{2}}+{{(8-10)}^{2}}} \\
& BC=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& BC=\sqrt{100+4} \\
& BC=\sqrt{104} \\
& BC=10.19 \\
\end{align}$
Therefore, we can say that:
\[BC\text{ }=\text{ }AD\]
Hence, we have proved that the opposite sides are equal.
Therefore, we can say that ABCD is a parallelogram.
Note: We know that the diagonals of a parallelogram bisect each other. So, alternatively we can prove that ABCD is a parallelogram by showing that the midpoints of the diagonals AC and BD are equal.
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Complete Step-by-Step solution:
Here, we are given four points (-7, -3), (5, 10), (15, 8) and (3, -5). Now we have to prove these are the vertices of a parallelogram.
Now, let us take the four vertices as A (-7, -3), B (5, 10), C (15, 8) and D (3, -5).
First let us consider the figure:
We know that in a parallelogram the opposite sides are equal. So, here we have to prove that:
AB = CD
BC = AD
Here, to prove all these things we have to apply the distance formula. For that consider two points \[P({{x}_{1}},{{y}_{1}})\] and $Q({{x}_{2}}.{{y}_{2}})$ then the distance between them is given by the distance formula, d:
$d=PQ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Now, consider the points A (-7, -3) and B (5, 10), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 5,10 \right)$. By applying the distance formula we will get:
$\begin{align}
& AB=\sqrt{{{(5-(-7))}^{2}}+{{(10-(-3))}^{2}}} \\
& AB=\sqrt{{{(5+7)}^{2}}+{{(10+3)}^{2}}} \\
& AB=\sqrt{{{12}^{2}}+{{13}^{2}}} \\
& AB=\sqrt{144+169} \\
& AB=\sqrt{313} \\
& AB=17.69 \\
\end{align}$
Now, consider the points C (15, 8) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 15,8 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& CD=\sqrt{{{(3-15)}^{2}}+{{(-5-8)}^{2}}} \\
& CD=\sqrt{{{(-12)}^{2}}+{{(-13)}^{2}}} \\
& CD=\sqrt{144+169} \\
& CD=\sqrt{313} \\
& CD=17.69 \\
\end{align}$
Hence, we can say that:
$AB=CD$
Now, let us consider the points A (-7, -3) and D (3, -5), where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -7,-3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,-5 \right)$. By applying the distance formula we will get:
$\begin{align}
& AD=\sqrt{{{(3-(-7))}^{2}}+{{(-5-(-3))}^{2}}} \\
& AD=\sqrt{{{(3+7)}^{2}}+{{(-5+3)}^{2}}} \\
& AD=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& AD=\sqrt{100+4} \\
& AD=\sqrt{104} \\
& AD=10.19 \\
\end{align}$
Next, let us consider the points B (5, 10) and C (15, 8) where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 5,10 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 15,8 \right).$By applying the distance formula we will get:
$\begin{align}
& BC=\sqrt{{{(15-5)}^{2}}+{{(8-10)}^{2}}} \\
& BC=\sqrt{{{10}^{2}}+{{(-2)}^{2}}} \\
& BC=\sqrt{100+4} \\
& BC=\sqrt{104} \\
& BC=10.19 \\
\end{align}$
Therefore, we can say that:
\[BC\text{ }=\text{ }AD\]
Hence, we have proved that the opposite sides are equal.
Therefore, we can say that ABCD is a parallelogram.
Note: We know that the diagonals of a parallelogram bisect each other. So, alternatively we can prove that ABCD is a parallelogram by showing that the midpoints of the diagonals AC and BD are equal.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

