
Prove that the locus of the mid-point of chords of the parabola ${y^2} = 4ax$ which touches the parabola ${y^2} = 4bx$ is${y^2}\left( {2a - b} \right) = 4{a^2}x$.
Answer
598.5k+ views
Hint: Midpoint of chord touches another parabola its mean that the chord will be a tangent to the parabola, so consider chord a tangent to${y^2} = 4bx$ parabola. Consider the points on parabola in the form of$(a{t^2},2at)$ .
Complete step-by-step answer:
Let the given parabola ${y^2} = 4ax$ has a chord, which cuts parabola at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Let the given midpoint of chord AB be$\left( {h,k} \right)$ .
We know midpoint of a line joining two point $\left( {x,y} \right)\& \left( {m,n} \right)$ =$\left( {\dfrac{{x + m}}{2},\dfrac{{y + n}}{2}} \right)$ .
$h = \left( {\dfrac{{a{t^2}_1 + a{t^2}_2}}{2}} \right)$ & $k = \left( {\dfrac{{2a{t_1} + 2a{t_2}}}{2}} \right)$
$h = \dfrac{a}{2}\left( {{t^2}_1 + {t^2}_2} \right)$ …(1)
& $k = a\left( {{t_1} + {t_2}} \right)$ …(2)
Now,
$2h = a\left( {{t^2}_1 + {t^2}_2} \right)$
Now manipulating it as ${(a + b)^2} = {a^2} + {b^2} + 2ab$ ,
$2h = a{\left( {({t_1} + {t_2}} \right)^2} - 2{t_1}{t_2})$
From equation (2).
..
${t_1}{t_2} = \dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two points at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Using two point formula of equation of line $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_1} - {x_1}}}\left( {x - {x_1}} \right)$ .
Then,
$y - 2a{t_1} = \dfrac{{\left( {2a{t_2} - 2a{t_1}} \right)}}{{a{t^2}_2 - a{t^2}_1}}\left( {x - a{t^2}_1} \right)$
Taking a common from numerator and denominator & then expand denominator.$\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ .
$
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{{t^2}_2 - {t^2}_1}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{({t_2} + {t_1})\left( {{t_2} - {t_1}} \right)}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{2}{{({t_2} + {t_1})}}\left( {x - a{t^2}_1} \right) \\
(y - 2a{t_1})({t_2} + {t_1}) = 2\left( {x - a{t^2}_1} \right) \\
y({t_2} + {t_1}) - 2a{t_1}{t_2} - 2a{t^2}_1 = 2x - 2a{t^2}_1 \\
$
$ - 2a{t^2}_1$ will be cancel out from both side
Then, we get
$
y({t_2} + {t_1}) - 2a{t_1}{t_2} = 2x \\
\\
$
Equation of chord will be
$y=\dfrac{2x}{{({t_2}+{t_1})}} + \dfrac{{2a{t_1}{t_2}}}{{({t_2} + {t_1})}}$ …(4)
Now in the question it is said that the locus of the mid points of chords of the parabola touches the parabola ${y^2} = 4bx$ .
We know if a chord touches a parabola at a point only, then it must be a tangent to the parabola.
Condition for a line of slope m : $y = mx + c$ to be a tangent to parabola ${y^2} = 4bx$ is $c = \dfrac{b}{m}$ .
From equation (4)
$m = \dfrac{2}{{({t_2} + {t_1})}}$ & $c = \dfrac{{2{a_{{t_1}}}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}}$
Now according to the condition stated.
$c = \dfrac{b}{m}$
$\dfrac{{2a{t_1}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}} = \dfrac{{b({t_2} + {t_1})}}{2}$
$4a{t_1}{t_2} = b({\left( {{t_1} + {t_2}} \right)^2}$
Now using equation (2) &(3).
$4a\left( {\dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}} \right) = b\left( {\dfrac{{{k^2}}}{{{a^2}}}} \right)$
Now manipulating the equation to get desired answer,
$\begin{gathered}
4a\left( {\dfrac{{{k^2} - 2ah}}{{2{a^2}}}} \right) = \dfrac{{b{k^2}}}{{{a^2}}} \\
2a{k^2} - 4{a^2}h = b{k^2} \\
{k^2}(2a - b) = 4{a^2}h \\
\end{gathered} $
Now replace $(h,k)$ with $(x,y)$
Then,
${y^2}(2a - b) = 4{a^2}x$
Hence, it’s proved that the locus of the midpoint of chords of the parabola ${y^2} = 4ax$ which touches the parabola ${y^2} = 4bx$ is${y^2}\left( {2a - b} \right) = 4{a^2}x$.
Note: Equation of a tangent to a parabola passing through point $(h,k)$ can be given as $yk = 2a(x + h)$ which can be directly used to solve it.
Complete step-by-step answer:
Let the given parabola ${y^2} = 4ax$ has a chord, which cuts parabola at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Let the given midpoint of chord AB be$\left( {h,k} \right)$ .
We know midpoint of a line joining two point $\left( {x,y} \right)\& \left( {m,n} \right)$ =$\left( {\dfrac{{x + m}}{2},\dfrac{{y + n}}{2}} \right)$ .
$h = \left( {\dfrac{{a{t^2}_1 + a{t^2}_2}}{2}} \right)$ & $k = \left( {\dfrac{{2a{t_1} + 2a{t_2}}}{2}} \right)$
$h = \dfrac{a}{2}\left( {{t^2}_1 + {t^2}_2} \right)$ …(1)
& $k = a\left( {{t_1} + {t_2}} \right)$ …(2)
Now,
$2h = a\left( {{t^2}_1 + {t^2}_2} \right)$
Now manipulating it as ${(a + b)^2} = {a^2} + {b^2} + 2ab$ ,
$2h = a{\left( {({t_1} + {t_2}} \right)^2} - 2{t_1}{t_2})$
From equation (2).
..
${t_1}{t_2} = \dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two points at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Using two point formula of equation of line $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_1} - {x_1}}}\left( {x - {x_1}} \right)$ .
Then,
$y - 2a{t_1} = \dfrac{{\left( {2a{t_2} - 2a{t_1}} \right)}}{{a{t^2}_2 - a{t^2}_1}}\left( {x - a{t^2}_1} \right)$
Taking a common from numerator and denominator & then expand denominator.$\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ .
$
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{{t^2}_2 - {t^2}_1}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{({t_2} + {t_1})\left( {{t_2} - {t_1}} \right)}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{2}{{({t_2} + {t_1})}}\left( {x - a{t^2}_1} \right) \\
(y - 2a{t_1})({t_2} + {t_1}) = 2\left( {x - a{t^2}_1} \right) \\
y({t_2} + {t_1}) - 2a{t_1}{t_2} - 2a{t^2}_1 = 2x - 2a{t^2}_1 \\
$
$ - 2a{t^2}_1$ will be cancel out from both side
Then, we get
$
y({t_2} + {t_1}) - 2a{t_1}{t_2} = 2x \\
\\
$
Equation of chord will be
$y=\dfrac{2x}{{({t_2}+{t_1})}} + \dfrac{{2a{t_1}{t_2}}}{{({t_2} + {t_1})}}$ …(4)
Now in the question it is said that the locus of the mid points of chords of the parabola touches the parabola ${y^2} = 4bx$ .
We know if a chord touches a parabola at a point only, then it must be a tangent to the parabola.
Condition for a line of slope m : $y = mx + c$ to be a tangent to parabola ${y^2} = 4bx$ is $c = \dfrac{b}{m}$ .
From equation (4)
$m = \dfrac{2}{{({t_2} + {t_1})}}$ & $c = \dfrac{{2{a_{{t_1}}}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}}$
Now according to the condition stated.
$c = \dfrac{b}{m}$
$\dfrac{{2a{t_1}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}} = \dfrac{{b({t_2} + {t_1})}}{2}$
$4a{t_1}{t_2} = b({\left( {{t_1} + {t_2}} \right)^2}$
Now using equation (2) &(3).
$4a\left( {\dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}} \right) = b\left( {\dfrac{{{k^2}}}{{{a^2}}}} \right)$
Now manipulating the equation to get desired answer,
$\begin{gathered}
4a\left( {\dfrac{{{k^2} - 2ah}}{{2{a^2}}}} \right) = \dfrac{{b{k^2}}}{{{a^2}}} \\
2a{k^2} - 4{a^2}h = b{k^2} \\
{k^2}(2a - b) = 4{a^2}h \\
\end{gathered} $
Now replace $(h,k)$ with $(x,y)$
Then,
${y^2}(2a - b) = 4{a^2}x$
Hence, it’s proved that the locus of the midpoint of chords of the parabola ${y^2} = 4ax$ which touches the parabola ${y^2} = 4bx$ is${y^2}\left( {2a - b} \right) = 4{a^2}x$.
Note: Equation of a tangent to a parabola passing through point $(h,k)$ can be given as $yk = 2a(x + h)$ which can be directly used to solve it.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

