
Prove that the locus of the mid-point of chords of the parabola ${y^2} = 4ax$ which touches the parabola ${y^2} = 4bx$ is${y^2}\left( {2a - b} \right) = 4{a^2}x$.
Answer
520.2k+ views
Hint: Midpoint of chord touches another parabola its mean that the chord will be a tangent to the parabola, so consider chord a tangent to${y^2} = 4bx$ parabola. Consider the points on parabola in the form of$(a{t^2},2at)$ .
Complete step-by-step answer:
Let the given parabola ${y^2} = 4ax$ has a chord, which cuts parabola at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Let the given midpoint of chord AB be$\left( {h,k} \right)$ .
We know midpoint of a line joining two point $\left( {x,y} \right)\& \left( {m,n} \right)$ =$\left( {\dfrac{{x + m}}{2},\dfrac{{y + n}}{2}} \right)$ .
$h = \left( {\dfrac{{a{t^2}_1 + a{t^2}_2}}{2}} \right)$ & $k = \left( {\dfrac{{2a{t_1} + 2a{t_2}}}{2}} \right)$
$h = \dfrac{a}{2}\left( {{t^2}_1 + {t^2}_2} \right)$ …(1)
& $k = a\left( {{t_1} + {t_2}} \right)$ …(2)
Now,
$2h = a\left( {{t^2}_1 + {t^2}_2} \right)$
Now manipulating it as ${(a + b)^2} = {a^2} + {b^2} + 2ab$ ,
$2h = a{\left( {({t_1} + {t_2}} \right)^2} - 2{t_1}{t_2})$
From equation (2).
..
${t_1}{t_2} = \dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two points at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Using two point formula of equation of line $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_1} - {x_1}}}\left( {x - {x_1}} \right)$ .
Then,
$y - 2a{t_1} = \dfrac{{\left( {2a{t_2} - 2a{t_1}} \right)}}{{a{t^2}_2 - a{t^2}_1}}\left( {x - a{t^2}_1} \right)$
Taking a common from numerator and denominator & then expand denominator.$\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ .
$
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{{t^2}_2 - {t^2}_1}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{({t_2} + {t_1})\left( {{t_2} - {t_1}} \right)}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{2}{{({t_2} + {t_1})}}\left( {x - a{t^2}_1} \right) \\
(y - 2a{t_1})({t_2} + {t_1}) = 2\left( {x - a{t^2}_1} \right) \\
y({t_2} + {t_1}) - 2a{t_1}{t_2} - 2a{t^2}_1 = 2x - 2a{t^2}_1 \\
$
$ - 2a{t^2}_1$ will be cancel out from both side
Then, we get
$
y({t_2} + {t_1}) - 2a{t_1}{t_2} = 2x \\
\\
$
Equation of chord will be
$y=\dfrac{2x}{{({t_2}+{t_1})}} + \dfrac{{2a{t_1}{t_2}}}{{({t_2} + {t_1})}}$ …(4)
Now in the question it is said that the locus of the mid points of chords of the parabola touches the parabola ${y^2} = 4bx$ .
We know if a chord touches a parabola at a point only, then it must be a tangent to the parabola.
Condition for a line of slope m : $y = mx + c$ to be a tangent to parabola ${y^2} = 4bx$ is $c = \dfrac{b}{m}$ .
From equation (4)
$m = \dfrac{2}{{({t_2} + {t_1})}}$ & $c = \dfrac{{2{a_{{t_1}}}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}}$
Now according to the condition stated.
$c = \dfrac{b}{m}$
$\dfrac{{2a{t_1}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}} = \dfrac{{b({t_2} + {t_1})}}{2}$
$4a{t_1}{t_2} = b({\left( {{t_1} + {t_2}} \right)^2}$
Now using equation (2) &(3).
$4a\left( {\dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}} \right) = b\left( {\dfrac{{{k^2}}}{{{a^2}}}} \right)$
Now manipulating the equation to get desired answer,
$\begin{gathered}
4a\left( {\dfrac{{{k^2} - 2ah}}{{2{a^2}}}} \right) = \dfrac{{b{k^2}}}{{{a^2}}} \\
2a{k^2} - 4{a^2}h = b{k^2} \\
{k^2}(2a - b) = 4{a^2}h \\
\end{gathered} $
Now replace $(h,k)$ with $(x,y)$
Then,
${y^2}(2a - b) = 4{a^2}x$
Hence, it’s proved that the locus of the midpoint of chords of the parabola ${y^2} = 4ax$ which touches the parabola ${y^2} = 4bx$ is${y^2}\left( {2a - b} \right) = 4{a^2}x$.
Note: Equation of a tangent to a parabola passing through point $(h,k)$ can be given as $yk = 2a(x + h)$ which can be directly used to solve it.
Complete step-by-step answer:
Let the given parabola ${y^2} = 4ax$ has a chord, which cuts parabola at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .

Let the given midpoint of chord AB be$\left( {h,k} \right)$ .
We know midpoint of a line joining two point $\left( {x,y} \right)\& \left( {m,n} \right)$ =$\left( {\dfrac{{x + m}}{2},\dfrac{{y + n}}{2}} \right)$ .
$h = \left( {\dfrac{{a{t^2}_1 + a{t^2}_2}}{2}} \right)$ & $k = \left( {\dfrac{{2a{t_1} + 2a{t_2}}}{2}} \right)$
$h = \dfrac{a}{2}\left( {{t^2}_1 + {t^2}_2} \right)$ …(1)
& $k = a\left( {{t_1} + {t_2}} \right)$ …(2)
Now,
$2h = a\left( {{t^2}_1 + {t^2}_2} \right)$
Now manipulating it as ${(a + b)^2} = {a^2} + {b^2} + 2ab$ ,
$2h = a{\left( {({t_1} + {t_2}} \right)^2} - 2{t_1}{t_2})$
From equation (2).
..
${t_1}{t_2} = \dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}$ …(3)
Now find the equation of chord passing through two points at $(a{t_1}^2,2a{t_1})$& $(a{t_2}^2,2a{t_2})$ .
Using two point formula of equation of line $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_1} - {x_1}}}\left( {x - {x_1}} \right)$ .
Then,
$y - 2a{t_1} = \dfrac{{\left( {2a{t_2} - 2a{t_1}} \right)}}{{a{t^2}_2 - a{t^2}_1}}\left( {x - a{t^2}_1} \right)$
Taking a common from numerator and denominator & then expand denominator.$\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ .
$
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{{t^2}_2 - {t^2}_1}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{{2\left( {{t_2} - {t_1}} \right)}}{{({t_2} + {t_1})\left( {{t_2} - {t_1}} \right)}}\left( {x - a{t^2}_1} \right) \\
y - 2a{t_1} = \dfrac{2}{{({t_2} + {t_1})}}\left( {x - a{t^2}_1} \right) \\
(y - 2a{t_1})({t_2} + {t_1}) = 2\left( {x - a{t^2}_1} \right) \\
y({t_2} + {t_1}) - 2a{t_1}{t_2} - 2a{t^2}_1 = 2x - 2a{t^2}_1 \\
$
$ - 2a{t^2}_1$ will be cancel out from both side
Then, we get
$
y({t_2} + {t_1}) - 2a{t_1}{t_2} = 2x \\
\\
$
Equation of chord will be
$y=\dfrac{2x}{{({t_2}+{t_1})}} + \dfrac{{2a{t_1}{t_2}}}{{({t_2} + {t_1})}}$ …(4)
Now in the question it is said that the locus of the mid points of chords of the parabola touches the parabola ${y^2} = 4bx$ .
We know if a chord touches a parabola at a point only, then it must be a tangent to the parabola.
Condition for a line of slope m : $y = mx + c$ to be a tangent to parabola ${y^2} = 4bx$ is $c = \dfrac{b}{m}$ .

From equation (4)
$m = \dfrac{2}{{({t_2} + {t_1})}}$ & $c = \dfrac{{2{a_{{t_1}}}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}}$
Now according to the condition stated.
$c = \dfrac{b}{m}$
$\dfrac{{2a{t_1}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}} = \dfrac{{b({t_2} + {t_1})}}{2}$
$4a{t_1}{t_2} = b({\left( {{t_1} + {t_2}} \right)^2}$
Now using equation (2) &(3).
$4a\left( {\dfrac{{{k^2}}}{{2{a^2}}} - \dfrac{h}{a}} \right) = b\left( {\dfrac{{{k^2}}}{{{a^2}}}} \right)$
Now manipulating the equation to get desired answer,
$\begin{gathered}
4a\left( {\dfrac{{{k^2} - 2ah}}{{2{a^2}}}} \right) = \dfrac{{b{k^2}}}{{{a^2}}} \\
2a{k^2} - 4{a^2}h = b{k^2} \\
{k^2}(2a - b) = 4{a^2}h \\
\end{gathered} $
Now replace $(h,k)$ with $(x,y)$
Then,
${y^2}(2a - b) = 4{a^2}x$
Hence, it’s proved that the locus of the midpoint of chords of the parabola ${y^2} = 4ax$ which touches the parabola ${y^2} = 4bx$ is${y^2}\left( {2a - b} \right) = 4{a^2}x$.
Note: Equation of a tangent to a parabola passing through point $(h,k)$ can be given as $yk = 2a(x + h)$ which can be directly used to solve it.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
