
Prove that the locus of the middle points of the portions of tangents included between the axes is the curve $\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=4$.
Answer
560.1k+ views
Hint: To solve this question what we will do is, we will substitute the point of parabola in the equation of tangents then we will replace the ( x, y ) by ( h, k ) and find the value of midpoint of line AB in terms of cosine and sine. And, then we will use identity to find the locus of the middle points of the portions of tangents included between the axes .
Complete step by step solution:
We know that equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$. Now. Let AB be tangent on ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and the point at which curve $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and tangent AB meet be $P(a\cos \theta ,b\sin \theta )$ that is point $P(a\cos \theta ,b\sin \theta )$ lies on both tangent and curve $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
Now, equation of tangent will be equal to, $\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1$ at point $P(a\cos \theta ,b\sin \theta )$, where $({{x}_{1}},{{y}_{1}})$ are any point on tangent line.
Substituting point $P(a\cos \theta ,b\sin \theta )$ in $\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1$ to get equation of tangent, we get
$\dfrac{x\cdot (acos\theta )}{{{a}^{2}}}+\dfrac{y\cdot (b\sin \theta )}{{{b}^{2}}}=1$
At, point A, y = 0
So, $\dfrac{x\cdot (cos\theta )}{a}=1$
Or, $x=\dfrac{a}{\cos \theta }$
So, coordinate of A is equals to, $\left( \dfrac{a}{\cos \theta },0 \right)$
Similarly, At, point B, x = 0
So, $\dfrac{y\cdot (sin\theta )}{b}=1$
Or, $y=\dfrac{b}{\sin \theta }$
So, coordinate of A is equals to, $\left( 0,\dfrac{b}{\sin \theta } \right)$
Now, let M be the mid point of line AB, using midpoint formula $\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ ,
Coordinates of M will be $\left( \dfrac{\dfrac{a}{\cos \theta }+0}{2},\dfrac{0+\dfrac{b}{\sin \theta }}{2} \right)$
So, M$\left( \dfrac{a}{2\cos \theta },\dfrac{b}{2\sin \theta } \right)$= ( h, k )
So, h = $\dfrac{a}{2\cos \theta }$and k = $\dfrac{b}{2\sin \theta }$
Finding value of $\cos \theta $ and $\sin \theta $ , we get
$\cos \theta =\dfrac{a}{2h}$ and $\sin \theta =\dfrac{b}{2k}$
We know that, ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Putting values of $\cos \theta $ and $\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$, we get
${{\left( \dfrac{a}{2h} \right)}^{2}}+{{\left( \dfrac{b}{2k} \right)}^{2}}=1$
On simplifying, we get
$\dfrac{1}{4}\left( {{\left( \dfrac{a}{h} \right)}^{2}}+{{\left( \dfrac{b}{k} \right)}^{2}} \right)=1$
${{\left( \dfrac{a}{h} \right)}^{2}}+{{\left( \dfrac{b}{k} \right)}^{2}}=4$
Replacing, locus points ( h, k ) by ( x, y ) we get
${{\left( \dfrac{a}{x} \right)}^{2}}+{{\left( \dfrac{b}{y} \right)}^{2}}=4$
Hence, the locus of the middle points of the portions of tangents included between the axes is the curve $\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=4$.
Note: While solving this question do not confuse between the equation of ellipse. $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and equation tangent $\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1$ as here $({{x}_{1}},{{y}_{1}})$ are any point on tangent line.
Calculation must be accurate and avoid making mistakes as this may give incorrect answers.
Complete step by step solution:
We know that equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$. Now. Let AB be tangent on ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and the point at which curve $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and tangent AB meet be $P(a\cos \theta ,b\sin \theta )$ that is point $P(a\cos \theta ,b\sin \theta )$ lies on both tangent and curve $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
Now, equation of tangent will be equal to, $\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1$ at point $P(a\cos \theta ,b\sin \theta )$, where $({{x}_{1}},{{y}_{1}})$ are any point on tangent line.
Substituting point $P(a\cos \theta ,b\sin \theta )$ in $\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1$ to get equation of tangent, we get
$\dfrac{x\cdot (acos\theta )}{{{a}^{2}}}+\dfrac{y\cdot (b\sin \theta )}{{{b}^{2}}}=1$
At, point A, y = 0
So, $\dfrac{x\cdot (cos\theta )}{a}=1$
Or, $x=\dfrac{a}{\cos \theta }$
So, coordinate of A is equals to, $\left( \dfrac{a}{\cos \theta },0 \right)$
Similarly, At, point B, x = 0
So, $\dfrac{y\cdot (sin\theta )}{b}=1$
Or, $y=\dfrac{b}{\sin \theta }$
So, coordinate of A is equals to, $\left( 0,\dfrac{b}{\sin \theta } \right)$
Now, let M be the mid point of line AB, using midpoint formula $\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ ,
Coordinates of M will be $\left( \dfrac{\dfrac{a}{\cos \theta }+0}{2},\dfrac{0+\dfrac{b}{\sin \theta }}{2} \right)$
So, M$\left( \dfrac{a}{2\cos \theta },\dfrac{b}{2\sin \theta } \right)$= ( h, k )
So, h = $\dfrac{a}{2\cos \theta }$and k = $\dfrac{b}{2\sin \theta }$
Finding value of $\cos \theta $ and $\sin \theta $ , we get
$\cos \theta =\dfrac{a}{2h}$ and $\sin \theta =\dfrac{b}{2k}$
We know that, ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Putting values of $\cos \theta $ and $\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$, we get
${{\left( \dfrac{a}{2h} \right)}^{2}}+{{\left( \dfrac{b}{2k} \right)}^{2}}=1$
On simplifying, we get
$\dfrac{1}{4}\left( {{\left( \dfrac{a}{h} \right)}^{2}}+{{\left( \dfrac{b}{k} \right)}^{2}} \right)=1$
${{\left( \dfrac{a}{h} \right)}^{2}}+{{\left( \dfrac{b}{k} \right)}^{2}}=4$
Replacing, locus points ( h, k ) by ( x, y ) we get
${{\left( \dfrac{a}{x} \right)}^{2}}+{{\left( \dfrac{b}{y} \right)}^{2}}=4$
Hence, the locus of the middle points of the portions of tangents included between the axes is the curve $\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=4$.
Note: While solving this question do not confuse between the equation of ellipse. $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and equation tangent $\dfrac{x\cdot {{x}_{1}}}{{{a}^{2}}}+\dfrac{y\cdot {{y}_{1}}}{{{b}^{2}}}=1$ as here $({{x}_{1}},{{y}_{1}})$ are any point on tangent line.
Calculation must be accurate and avoid making mistakes as this may give incorrect answers.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

