
Prove that the greatest integer function is defined by,
\[f(x) = [x],0 < x < 3\] is not differentiable at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Answer
620.4k+ views
Hint: In this question first we will check the continuity of the given function at a given point, if it is discontinuous at that given point, it will also be non-differentiable at that point.
Complete step-by-step answer:
As we are given with a function,
\[ \Rightarrow f(x) = [x],0 < x < 3\]
\[ \Rightarrow \]As, we know that, if \[{\text{ }}f(x)\] is not continuous at a point,
Then it will not be differentiable at that point too.
\[ \Rightarrow \]So, let us check for continuity of \[f(x){\text{ }} = {\text{ }}\left[ x \right]\] at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Checking continuity at \[x{\text{ }} = {\text{ }}1\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} [x] = 0\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} [x] = 1\]
As, we have seen above that \[\mathop {\lim }\limits_{x \to {1^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ + }} f(x)\]
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[x{\text{ }} = {\text{ }}1\].
Now, checking continuity at \[{\text{x}} = 2\].
\[ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} [x] = 1\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} [x] = 2\]
As, we have seen above that, \[\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\].
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[{\text{x}} = 2\].
\[ \Rightarrow \]Hence, \[{\text{ }}f(x)\] is neither differentiable at \[x{\text{ }} = {\text{ }}1\]
nor differentiable at \[{\text{x}} = 2\].
Note: Whenever we come up with this type of problem we are asked to check whether the function, \[{\text{ }}f(x)\] is differentiable or not. Then first we should check the continuity of the given function, if it is continuous then we have to check whether the function is differentiable or not.
Complete step-by-step answer:
As we are given with a function,
\[ \Rightarrow f(x) = [x],0 < x < 3\]
\[ \Rightarrow \]As, we know that, if \[{\text{ }}f(x)\] is not continuous at a point,
Then it will not be differentiable at that point too.
\[ \Rightarrow \]So, let us check for continuity of \[f(x){\text{ }} = {\text{ }}\left[ x \right]\] at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Checking continuity at \[x{\text{ }} = {\text{ }}1\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} [x] = 0\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} [x] = 1\]
As, we have seen above that \[\mathop {\lim }\limits_{x \to {1^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ + }} f(x)\]
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[x{\text{ }} = {\text{ }}1\].
Now, checking continuity at \[{\text{x}} = 2\].
\[ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} [x] = 1\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} [x] = 2\]
As, we have seen above that, \[\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\].
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[{\text{x}} = 2\].
\[ \Rightarrow \]Hence, \[{\text{ }}f(x)\] is neither differentiable at \[x{\text{ }} = {\text{ }}1\]
nor differentiable at \[{\text{x}} = 2\].
Note: Whenever we come up with this type of problem we are asked to check whether the function, \[{\text{ }}f(x)\] is differentiable or not. Then first we should check the continuity of the given function, if it is continuous then we have to check whether the function is differentiable or not.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

