Prove that the greatest integer function is defined by,
\[f(x) = [x],0 < x < 3\] is not differentiable at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Answer
Verified
504k+ views
Hint: In this question first we will check the continuity of the given function at a given point, if it is discontinuous at that given point, it will also be non-differentiable at that point.
Complete step-by-step answer:
As we are given with a function,
\[ \Rightarrow f(x) = [x],0 < x < 3\]
\[ \Rightarrow \]As, we know that, if \[{\text{ }}f(x)\] is not continuous at a point,
Then it will not be differentiable at that point too.
\[ \Rightarrow \]So, let us check for continuity of \[f(x){\text{ }} = {\text{ }}\left[ x \right]\] at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Checking continuity at \[x{\text{ }} = {\text{ }}1\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} [x] = 0\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} [x] = 1\]
As, we have seen above that \[\mathop {\lim }\limits_{x \to {1^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ + }} f(x)\]
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[x{\text{ }} = {\text{ }}1\].
Now, checking continuity at \[{\text{x}} = 2\].
\[ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} [x] = 1\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} [x] = 2\]
As, we have seen above that, \[\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\].
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[{\text{x}} = 2\].
\[ \Rightarrow \]Hence, \[{\text{ }}f(x)\] is neither differentiable at \[x{\text{ }} = {\text{ }}1\]
nor differentiable at \[{\text{x}} = 2\].
Note: Whenever we come up with this type of problem we are asked to check whether the function, \[{\text{ }}f(x)\] is differentiable or not. Then first we should check the continuity of the given function, if it is continuous then we have to check whether the function is differentiable or not.
Complete step-by-step answer:
As we are given with a function,
\[ \Rightarrow f(x) = [x],0 < x < 3\]
\[ \Rightarrow \]As, we know that, if \[{\text{ }}f(x)\] is not continuous at a point,
Then it will not be differentiable at that point too.
\[ \Rightarrow \]So, let us check for continuity of \[f(x){\text{ }} = {\text{ }}\left[ x \right]\] at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Checking continuity at \[x{\text{ }} = {\text{ }}1\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} [x] = 0\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} [x] = 1\]
As, we have seen above that \[\mathop {\lim }\limits_{x \to {1^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ + }} f(x)\]
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[x{\text{ }} = {\text{ }}1\].
Now, checking continuity at \[{\text{x}} = 2\].
\[ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} [x] = 1\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} [x] = 2\]
As, we have seen above that, \[\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\].
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[{\text{x}} = 2\].
\[ \Rightarrow \]Hence, \[{\text{ }}f(x)\] is neither differentiable at \[x{\text{ }} = {\text{ }}1\]
nor differentiable at \[{\text{x}} = 2\].
Note: Whenever we come up with this type of problem we are asked to check whether the function, \[{\text{ }}f(x)\] is differentiable or not. Then first we should check the continuity of the given function, if it is continuous then we have to check whether the function is differentiable or not.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
A Paragraph on Pollution in about 100-150 Words