
Prove that the greatest integer function is defined by,
\[f(x) = [x],0 < x < 3\] is not differentiable at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Answer
604.8k+ views
Hint: In this question first we will check the continuity of the given function at a given point, if it is discontinuous at that given point, it will also be non-differentiable at that point.
Complete step-by-step answer:
As we are given with a function,
\[ \Rightarrow f(x) = [x],0 < x < 3\]
\[ \Rightarrow \]As, we know that, if \[{\text{ }}f(x)\] is not continuous at a point,
Then it will not be differentiable at that point too.
\[ \Rightarrow \]So, let us check for continuity of \[f(x){\text{ }} = {\text{ }}\left[ x \right]\] at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Checking continuity at \[x{\text{ }} = {\text{ }}1\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} [x] = 0\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} [x] = 1\]
As, we have seen above that \[\mathop {\lim }\limits_{x \to {1^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ + }} f(x)\]
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[x{\text{ }} = {\text{ }}1\].
Now, checking continuity at \[{\text{x}} = 2\].
\[ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} [x] = 1\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} [x] = 2\]
As, we have seen above that, \[\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\].
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[{\text{x}} = 2\].
\[ \Rightarrow \]Hence, \[{\text{ }}f(x)\] is neither differentiable at \[x{\text{ }} = {\text{ }}1\]
nor differentiable at \[{\text{x}} = 2\].
Note: Whenever we come up with this type of problem we are asked to check whether the function, \[{\text{ }}f(x)\] is differentiable or not. Then first we should check the continuity of the given function, if it is continuous then we have to check whether the function is differentiable or not.
Complete step-by-step answer:
As we are given with a function,
\[ \Rightarrow f(x) = [x],0 < x < 3\]
\[ \Rightarrow \]As, we know that, if \[{\text{ }}f(x)\] is not continuous at a point,
Then it will not be differentiable at that point too.
\[ \Rightarrow \]So, let us check for continuity of \[f(x){\text{ }} = {\text{ }}\left[ x \right]\] at \[x{\text{ }} = {\text{ }}1\] and \[x{\text{ }} = {\text{ 2}}\].
Checking continuity at \[x{\text{ }} = {\text{ }}1\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} [x] = 0\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} [x] = 1\]
As, we have seen above that \[\mathop {\lim }\limits_{x \to {1^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ + }} f(x)\]
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[x{\text{ }} = {\text{ }}1\].
Now, checking continuity at \[{\text{x}} = 2\].
\[ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} [x] = 1\]
\[ \Rightarrow \]And, \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} [x] = 2\]
As, we have seen above that, \[\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\].
\[ \Rightarrow \]Therefore, \[{\text{ }}f(x)\] is neither continuous nor differentiable at \[{\text{x}} = 2\].
\[ \Rightarrow \]Hence, \[{\text{ }}f(x)\] is neither differentiable at \[x{\text{ }} = {\text{ }}1\]
nor differentiable at \[{\text{x}} = 2\].
Note: Whenever we come up with this type of problem we are asked to check whether the function, \[{\text{ }}f(x)\] is differentiable or not. Then first we should check the continuity of the given function, if it is continuous then we have to check whether the function is differentiable or not.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

